Slack-Decode Simultaneously and Redundantly Threaded (SD-SRT) is proposed for detecting transient faults in processors. SD-SRT boosts the previously proposed SRT performance via definitely eliminating redundant inst...Slack-Decode Simultaneously and Redundantly Threaded (SD-SRT) is proposed for detecting transient faults in processors. SD-SRT boosts the previously proposed SRT performance via definitely eliminating redundant instructiou fetches. First, the fetch stage is moved out of the Spheres of Replication (SoR), and a unified instruction-fetch-queue (IFQ) is exploited by both the leading and trailing threads. Second, a scheme called slack-decode cooperates with the unified IFQ to harmonize proceeding of the two threads. The simulations show that SD-SRT outperforms original SRT in terms of IPC by 15%, and decreases I-cache access by 42%. Meanwhile, SD-SRT leads to a lessened size and complexity for hardware structures such as load-value-queue and store-buffer.展开更多
Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which m...Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which make it difficult to prevent disaster effectively. In this study the hydrological model of ground water table in loose sediment is established. According to infinite slope theory, the safety factor of deposits is defined as the ratio of resistance force to driving force. The starting condition of post-earthquake gully debris flow is clearly studied by analyzing the effects of rainfall intensity, seismic strength, slope gradient and mechanical properties on the balance of accumulation body. Then the formulas of rainfall and aftershock threshold for starting of gully debris flow are proposed, and an example is given to illustrate the effect of rainfall, aftershocks and their coupling action on a debris flow. The result shows the critical rainfall intensity decreases as the lateral seismic acceleration and channel gradient increases, while the critical intensity linearly increases as the friction angle increases.展开更多
文摘Slack-Decode Simultaneously and Redundantly Threaded (SD-SRT) is proposed for detecting transient faults in processors. SD-SRT boosts the previously proposed SRT performance via definitely eliminating redundant instructiou fetches. First, the fetch stage is moved out of the Spheres of Replication (SoR), and a unified instruction-fetch-queue (IFQ) is exploited by both the leading and trailing threads. Second, a scheme called slack-decode cooperates with the unified IFQ to harmonize proceeding of the two threads. The simulations show that SD-SRT outperforms original SRT in terms of IPC by 15%, and decreases I-cache access by 42%. Meanwhile, SD-SRT leads to a lessened size and complexity for hardware structures such as load-value-queue and store-buffer.
基金supported by the National Technology Support Project (Grant No. 2011BAK12B03)the National Natural Science Foundation of China (Grant No. 40872181)
文摘Due to the special condition of provenance and disaster environment after "5·12" Earthquake, the probability and conditions of the occurrence of gully debris flow change greatly after the event, which make it difficult to prevent disaster effectively. In this study the hydrological model of ground water table in loose sediment is established. According to infinite slope theory, the safety factor of deposits is defined as the ratio of resistance force to driving force. The starting condition of post-earthquake gully debris flow is clearly studied by analyzing the effects of rainfall intensity, seismic strength, slope gradient and mechanical properties on the balance of accumulation body. Then the formulas of rainfall and aftershock threshold for starting of gully debris flow are proposed, and an example is given to illustrate the effect of rainfall, aftershocks and their coupling action on a debris flow. The result shows the critical rainfall intensity decreases as the lateral seismic acceleration and channel gradient increases, while the critical intensity linearly increases as the friction angle increases.