The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To e...The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results.展开更多
The Westinghouse Nuclear Safety Advisory Letter NSAL-09-8 investigated the possibility of presence of vapor in RHR (residual heat removal) system in modes 3/4 LOCA (loss-of-coolant accident) conditions. This conce...The Westinghouse Nuclear Safety Advisory Letter NSAL-09-8 investigated the possibility of presence of vapor in RHR (residual heat removal) system in modes 3/4 LOCA (loss-of-coolant accident) conditions. This concerns the Westinghouse standard three-loops plant for which the RHR is the low pressure part of the St (safety injection). In some cases one or both RHR trains may become inoperable for SI function. As a response to this letter, Westinghouse Electric Belgium is providing RELAP5 analyzes for Westinghouse NSSS (nuclear steam supply system) European plants to assess the thermal hydraulic behavior of the RHR suction piping system for ECCS (emergency core cooling system) initiation events postulated to occur during startup/shutdown operations. Several concerns including condensation induced water hammer and voiding at the RHR pump have been investigated. As a conclusion, the analysis allowed to define the bounding hot leg temperature conditions under which both RHR trains remain safely operable. These bounding conditions are then implemented by the customer in their OPs (operating procedures) to achieve safe operations and successful accident management.展开更多
Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cyc...Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cycle for the WHR of gaseous fuel engines is proposed in the paper.This system can avoid wasting the heat in condenser so that the efficiency of the whole WHR system improves,but the condensing temperature of Rankin cycle(RC)must increase in order to use absorption refrigeration system,which leads to the decrease of RC output power.Therefore,the relationship between the profit of absorption refrigeration system and the loss of RC in this combined system is the mainly studied content in the paper.Because the energy quality of cooling and electricity are different,cooling power in absorption refrigeration is converted to corresponding electrical power consumed by electric cooling system,which is defined as equivalent electrical power.With this method,the effects of some important operation parameters on the performance of the ECCS are researched,and the equivalent efficiency,exergy efficiency and primary energy rate are compared in the paper.展开更多
文摘The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results.
文摘The Westinghouse Nuclear Safety Advisory Letter NSAL-09-8 investigated the possibility of presence of vapor in RHR (residual heat removal) system in modes 3/4 LOCA (loss-of-coolant accident) conditions. This concerns the Westinghouse standard three-loops plant for which the RHR is the low pressure part of the St (safety injection). In some cases one or both RHR trains may become inoperable for SI function. As a response to this letter, Westinghouse Electric Belgium is providing RELAP5 analyzes for Westinghouse NSSS (nuclear steam supply system) European plants to assess the thermal hydraulic behavior of the RHR suction piping system for ECCS (emergency core cooling system) initiation events postulated to occur during startup/shutdown operations. Several concerns including condensation induced water hammer and voiding at the RHR pump have been investigated. As a conclusion, the analysis allowed to define the bounding hot leg temperature conditions under which both RHR trains remain safely operable. These bounding conditions are then implemented by the customer in their OPs (operating procedures) to achieve safe operations and successful accident management.
基金supported by the National Basic Research Program of China("973"Project)(Gran No.2011CB707201)
文摘Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cycle for the WHR of gaseous fuel engines is proposed in the paper.This system can avoid wasting the heat in condenser so that the efficiency of the whole WHR system improves,but the condensing temperature of Rankin cycle(RC)must increase in order to use absorption refrigeration system,which leads to the decrease of RC output power.Therefore,the relationship between the profit of absorption refrigeration system and the loss of RC in this combined system is the mainly studied content in the paper.Because the energy quality of cooling and electricity are different,cooling power in absorption refrigeration is converted to corresponding electrical power consumed by electric cooling system,which is defined as equivalent electrical power.With this method,the effects of some important operation parameters on the performance of the ECCS are researched,and the equivalent efficiency,exergy efficiency and primary energy rate are compared in the paper.