The heat transfer characteristics of the PRHR (passive residual heat removal) HX (heat exchanger) are very important to reactor design and safety assessment of AP1000. The purpose of the present experiment was to ...The heat transfer characteristics of the PRHR (passive residual heat removal) HX (heat exchanger) are very important to reactor design and safety assessment of AP1000. The purpose of the present experiment was to obtain the natural circulation data in HX to research the heat transfer behavior. The PRHR HX was simulated by three C-type tubes with prototype sizes immerged in a cooling tank. Separate-effect tests of natural circulation in HX tubes have been performed within wide conditions which could cover the operation conditions in AP1000. The experiment provided lots of important data to indicate heat transfer phenomena of PRHR HX. The test conditions were calculated by RELAP5/MOD3.3. The calculation results agreed well with the experiment. RELAP5 could be applied with proper correlations to analyze the heat transfer in PRHR HX under the test conditions.展开更多
文摘The heat transfer characteristics of the PRHR (passive residual heat removal) HX (heat exchanger) are very important to reactor design and safety assessment of AP1000. The purpose of the present experiment was to obtain the natural circulation data in HX to research the heat transfer behavior. The PRHR HX was simulated by three C-type tubes with prototype sizes immerged in a cooling tank. Separate-effect tests of natural circulation in HX tubes have been performed within wide conditions which could cover the operation conditions in AP1000. The experiment provided lots of important data to indicate heat transfer phenomena of PRHR HX. The test conditions were calculated by RELAP5/MOD3.3. The calculation results agreed well with the experiment. RELAP5 could be applied with proper correlations to analyze the heat transfer in PRHR HX under the test conditions.