期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
亚麻织物阻燃整理的初探 被引量:2
1
作者 赵阿木 《黑龙江纺织》 2000年第2期15-16,共2页
通过测量分别经无机、有机等不同阻燃整理剂处理后的亚麻织物的余燃、阻燃能力以 及炭长,研究各种不同阻燃整理剂对亚麻织物阻燃效果的优劣性及耐久性,探索亚麻 织物最佳阻燃整理剂及阻燃工艺。
关键词 亚麻织物 阻燃整理 炭长 阻燃整理剂 余燃
下载PDF
Simulation of Gas-Fired Triple-Effect LiBr/Water Absorption Cooling System with Exhaust Heat Recovery Generator 被引量:1
2
作者 汪磊磊 由世俊 +1 位作者 张欢 李宪莉 《Transactions of Tianjin University》 EI CAS 2010年第3期187-193,共7页
An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the no... An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles. 展开更多
关键词 LiBr/water triple-effect absorption cooling cycle exhaust heat recovery
下载PDF
Dynamics of Lumber Production from Buttressed-Stumps of Logging Residues Using a Fuel Powered Horizontal Mobile Bandsaw Machine
3
作者 Reynolds Okai Esi Ametoxe Banful Stephen Jobson Mitchual 《Journal of Environmental Science and Engineering(A)》 2016年第2期82-89,共8页
Logging residue can be defined as any form of wood, which under the highest stage of technological development could be used in manufacturing but is left in the forest during logging. Lumber production from logging re... Logging residue can be defined as any form of wood, which under the highest stage of technological development could be used in manufacturing but is left in the forest during logging. Lumber production from logging residues of a previous logging activity by a timber firm was undertaken with the objective of determining the suitability of utilizing buttressed-stumps as raw material for the timber industry. A horizontal mobile bandsaw machine was used to process the buttressed-stumps into lumber. The machine was characterized by a thin-kerr sawing technology (kerf-width 1.6 mm) compared to the conventional bandsaw machines of kerr-widths ranging from 3.0-4.5 mm. Lumber value and volume yields, fuel consumption rate, frequency of tool replacement and lumber production rate were assessed. Results indicated that there is the potential to increase timber production from logging residues by utilizing buttressed-stumps. Lumber value and volume yields of eight timber species investigated in this study ranged from 5%-31% and 34%-54% respectively. Fuel consumption rate which increased with increasing wood density, ranged from 5-14.5 liters/m3 of lumber produced. Frequency of saw replacement increased with increasing wood density. The number of saws required to produce one cubic meter of lumber, ranged from 1 to 7. Lumber production rate ranged from 0.10-0.38 m3/hour, increasing with decreasing wood density. 展开更多
关键词 Buttressed-stumps downstream processing logging residues lumber value and volume yields mobile bandsawmachine.
下载PDF
Dual Pressure versus Hybrid Recuperation in an Integrated Solid Oxide Fuel Cell Cycle--Steam Cycle
4
作者 Masoud Rokni 《Journal of Energy and Power Engineering》 2014年第4期596-611,共16页
A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the rema... A SOFC (solid oxide fuel cell) cycle running on natural gas was integrated with a ST (steam turbine) cycle. The fuel is desulfurized and pre-reformed before entering the SOFC. A burner was used to combust the remaining fuel after the SOFC stacks. The off-gases from the burner were used to produce steam in a HRSG (heat recovery steam generator). The bottoming steam cycle was modeled with two configurations: (1) a simple single pressure level and (2) a dual pressure level with both a reheat and a pre-heater. The SOFC stacks in the present SOFC-ST hybrid cycles were not pressurized. The dual pressure configuration steam cycle combined with SOFC cycle (SOFC-ST) was new and has not been studied previously. In each of the configuration, a hybrid recuperator was used to recovery the remaining energy of the off-gases after the HRSG. Thus, four different plants system setups were compared to each other to reveal the most superior concept with respect to plant efficiency and power. It was found that in order to increase the plant efficiency considerably, it was enough to use a single pressure with a hybrid recuperator instead of a dual pressure Rankine cycle. 展开更多
关键词 SOFC fuel cell hybrid cycle steam cycle Rankine cycle hybrid recuperation.
下载PDF
Experimental study of the flow and heat transfer of a gas–water mixture through a packed channel 被引量:1
5
作者 Xiaolei Zhu Xiaofeng Sui +2 位作者 Yan Zhao Ji'an Meng Zhixin Li 《Science Bulletin》 SCIE EI CAS CSCD 2016年第5期406-415,共10页
Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue... Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas.The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water. 展开更多
关键词 Flue gas waste heat recovery Flow and heat transfer Moist air Packed heat exchanger tower
原文传递
Waste heat recovery and denitrification of flue gases from gas-fired boilers 被引量:2
6
作者 ZHAO Yan ZHU Xiao Lei +1 位作者 MENG Ji An LI Zhi Xin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1874-1881,共8页
A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfe... A waste heat recovery and denitrification system was developed for improving energy conservation and emissions control especially for control of PM2.5 particles and haze. The system uses enhanced heat and mass transfer techniques in a packed heat exchange tower with self-rotation and zero-pressure spraying, low temperature NO oxidation by ozone, and neutralization with an alkali solution. Operating data in a test project gave NOx in the exhaust flue gas of less than 30 mg/Nm3 with an ozone addition rate of 8 kg/h and spray water p H of 7.5–8, an average heat recovery of 3 MW, and an average heat supply of 7.2 MW. 展开更多
关键词 flue gas waste heat recovery denitrification ozone oxidation of NO neutralization with alkali solution heat pump
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部