A statistical analysis on the Wenchuan aftershock activity triggered by tidal forces is systematically studied based on Schusters test, including earthquakes triggered by tidal force, tidal stress and tidal coulomb fa...A statistical analysis on the Wenchuan aftershock activity triggered by tidal forces is systematically studied based on Schusters test, including earthquakes triggered by tidal force, tidal stress and tidal coulomb failure stress. The results show that a group of strong aftershocks which occurred at the end of July to early August in 2008 at the north of Wenchuan were obviously triggered by earth tide, the same conclusion is drawn by Schusters smooth test of the tidal force, tidal stress and tidal coulomb failure stress. In addition, the Wenchuan aftershock activity is obviously triggered by fortnight tide. In the north, the aftershocks happened more frequently in the first and last quarters of the moon, and in the south, the aftershocks happened more frequently in the first and last quarters of the moon and during the full moon.展开更多
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the c...Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.展开更多
The paper inverts the focal mechanism solutions of the Yutian M_S7. 3 main shock,foreshocks and M_S≥3. 5 aftershocks by using the CAP method,based on the broadband waveforms recorded by the Xinjiang and Tibet Digital...The paper inverts the focal mechanism solutions of the Yutian M_S7. 3 main shock,foreshocks and M_S≥3. 5 aftershocks by using the CAP method,based on the broadband waveforms recorded by the Xinjiang and Tibet Digital Seismic Networks. The results show that the M_S7. 3 strong earthquake is of strike-slip type with a normal faulting component,and combined with the analysis of focal structure and the aftershock distribution,the nodal plane I with strike 241°,dip 90° and rake- 22° is considered to be the seismogenic fault plane of the main shock. The direction of P-axis for the main shock is 194°,close to the near NS direction of the principal stress P-axis of historical strong earthquakes in this region. The focal mechanism solution of the M_S5. 4 foreshock has a good consistency with that of the main shock. Among the 18 aftershocks,10 are of strike-slip type,6 are of normal faulting type and 2 are of thrust type. 70% of the aftershocks in the sequence have a focal mechanism with P-axis in the near-NS direction. The focal depths of this M_S7. 3 earthquake sequences are distributed in the range of 5km- 28 km,with the majority in the depth range of 15km- 20 km,slightly deeper than the depth of 10 km of the main shock as calculated.展开更多
基金sponsored by the National Key Technology R&D Program,China(2008BAC38B03)
文摘A statistical analysis on the Wenchuan aftershock activity triggered by tidal forces is systematically studied based on Schusters test, including earthquakes triggered by tidal force, tidal stress and tidal coulomb failure stress. The results show that a group of strong aftershocks which occurred at the end of July to early August in 2008 at the north of Wenchuan were obviously triggered by earth tide, the same conclusion is drawn by Schusters smooth test of the tidal force, tidal stress and tidal coulomb failure stress. In addition, the Wenchuan aftershock activity is obviously triggered by fortnight tide. In the north, the aftershocks happened more frequently in the first and last quarters of the moon, and in the south, the aftershocks happened more frequently in the first and last quarters of the moon and during the full moon.
基金sponsored by the Earthquake Situation Tracking Program of 2014 (2014020110)the Science and Technological Fund of Earthquake Administration of Xinjiang Uygur Autonomous Region,China (201402)
文摘Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.
基金funded jointly by Foundation of Earthquake Administration of Xinjiang Uygur Autonomous Region(Grant No.201401)the Contract for Annual Earthquake Situation Tracking Task of 2014,CEA(2014020106)
文摘The paper inverts the focal mechanism solutions of the Yutian M_S7. 3 main shock,foreshocks and M_S≥3. 5 aftershocks by using the CAP method,based on the broadband waveforms recorded by the Xinjiang and Tibet Digital Seismic Networks. The results show that the M_S7. 3 strong earthquake is of strike-slip type with a normal faulting component,and combined with the analysis of focal structure and the aftershock distribution,the nodal plane I with strike 241°,dip 90° and rake- 22° is considered to be the seismogenic fault plane of the main shock. The direction of P-axis for the main shock is 194°,close to the near NS direction of the principal stress P-axis of historical strong earthquakes in this region. The focal mechanism solution of the M_S5. 4 foreshock has a good consistency with that of the main shock. Among the 18 aftershocks,10 are of strike-slip type,6 are of normal faulting type and 2 are of thrust type. 70% of the aftershocks in the sequence have a focal mechanism with P-axis in the near-NS direction. The focal depths of this M_S7. 3 earthquake sequences are distributed in the range of 5km- 28 km,with the majority in the depth range of 15km- 20 km,slightly deeper than the depth of 10 km of the main shock as calculated.