The problems of current highly redundant flight control system are analyzed in this paper. Our study gives methods of utilizing other information to reduce physical components on the condition of meeting the reliabili...The problems of current highly redundant flight control system are analyzed in this paper. Our study gives methods of utilizing other information to reduce physical components on the condition of meeting the reliability requirements for flight control system. The strategies presented in this paper mainly include information redundancy, multi-thread, time redundancy, geometry space redundancy, etc.. Analysis and simulation show these non-hardware based methods can reduce the requirement of system hardware level and thus reduce the system complexity, weight, space, costs and R&D (research and development) time.展开更多
The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect...The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.展开更多
文摘The problems of current highly redundant flight control system are analyzed in this paper. Our study gives methods of utilizing other information to reduce physical components on the condition of meeting the reliability requirements for flight control system. The strategies presented in this paper mainly include information redundancy, multi-thread, time redundancy, geometry space redundancy, etc.. Analysis and simulation show these non-hardware based methods can reduce the requirement of system hardware level and thus reduce the system complexity, weight, space, costs and R&D (research and development) time.
基金supported by the National Natural Science Foundation of China (Grant No. 11002076)
文摘The Inner Formation Flying System (IFFS) consisting of an freely flying in the shield cavity can construct a pure gravity outer satellite and an inner satellite which is a sphere proof mass orbit to precisely detect the earth gravity field. The residual gas in the cavity is a significant disturbance source due to the temperature inhomogeneity and relative motion of the inner satellite. The expressions of the disturbance forces were derived based on the property of rarefied gas, including the radiometer effect and the damping force. According to the current design of IFFS, heat transfer analysis of the cavity and the inner satellite was carried out, and the surface temperature distribution of the cavity and the inner satellite was given. The relative motion of the inner satellite was obtained from the formation control simulation of IFFS. Then the residual gas disturbance was calculated. The disturbance acceleration acting on the inner satellite due to the radiometer effect was on the order of 10^-11 m s^-2 and the damping acceleration was on the order of 10^-15 m s^-2.