期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
唐代武、韦政权辨析:从二后祔葬问题说起
1
作者 赵雨乐 《乾陵文化研究》 2008年第1期483-496,共14页
一、引言在史学研究领域里,历史人物的评价往往随时代变迁而有不同的侧重点,因而产生分歧的看法。推而广之,将各时期人物作同项比对,从而概括某种面貌特性,更容易陷于机械的归纳,忽略了历史流动下的人为变量。本文讨论的武后和韦后,紧... 一、引言在史学研究领域里,历史人物的评价往往随时代变迁而有不同的侧重点,因而产生分歧的看法。推而广之,将各时期人物作同项比对,从而概括某种面貌特性,更容易陷于机械的归纳,忽略了历史流动下的人为变量。本文讨论的武后和韦后,紧接于太宗贞观、高宗永徽治世,却从李氏皇权中革命更替,被喻为唐代女主专政的典范。观史书上,每以武、韦政治来总观此一时代的面貌,并列举武后和韦后各种施政,作为延绵数十年的女祸根由[1]。武、韦为巩固权力,二人政治相类的手法颇多,例如宠用亲族子弟、善用宫人和内廷术士、编织皇帝受命征兆、打击在朝反对势力,凡此均反映其人威权所在[2]。然而若寻索史料,当发现唐人对武、韦的评价有别,对于前者尤采宽宥态度,凡此既涉及武、韦政策轻重不一。 展开更多
关键词 人物 评价 总观 典范 历史 面貌 女主 时代 作同项
原文传递
ON FUNCTIONAL DECOMPOSITION OF MULTIVARIATE POLYNOMIALS WITH DIFFERENTIATION AND HOMOGENIZATION
2
作者 Shangwei ZHAO Ruyong FENG Xiao-Shan GAO 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2012年第2期329-347,共19页
This paper gives a theoretical analysis for the algorithms to compute functional decomposition for multivariate polynomials based on differentiation and homogenization which were proposed by Ye, Dai, and Lam (1999) ... This paper gives a theoretical analysis for the algorithms to compute functional decomposition for multivariate polynomials based on differentiation and homogenization which were proposed by Ye, Dai, and Lam (1999) and were developed by Faugere, Perret (2006, 2008, 2009). The authors show that a degree proper functional decomposition for a set of randomly decomposable quartic homoge- nous polynomials can be computed using the algorithm with high probability. This solves a conjecture proposed by Ye, Dal, and Lam (1999). The authors also propose a conjecture which asserts that the decomposition for a set of polynomials can be computed from that of its homogenization and show that the conjecture is valid with high probability for quartic polynomials. Finally, the authors prove that the right decomposition factors for a set of polynomials can be computed from its right decomposition factor space. 展开更多
关键词 Cryptosystem analysis functional decomposition homogeneous polynomials multivariatepolynomial right factor space.
原文传递
Polynomial solutions of quasi-homogeneous partial differential equations
3
作者 LUO Xuebo ZHENG Zhujun Institute of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China Institute of Mathematics, Henan University, Kaifeng 475001, China 《Science China Mathematics》 SCIE 2001年第9期1148-1155,共8页
By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\... By means of a method of analytic number theory the following theorem is proved. Letp be a quasi-homogeneous linear partial differential operator with degreem,m > 0, w.r.t a dilation $\left\{ {\delta _\tau } \right\}{\text{ }}_{\tau< 0} $ given by ( a1, …, an). Assume that either a1, …, an are positive rational numbers or $m{\text{ = }}\sum\limits_{j = 1}^n {\alpha _j \alpha _j } $ for some $\alpha {\text{ = }}\left( {\alpha _1 ,{\text{ }} \ldots {\text{ }},\alpha _n } \right) \in l _ + ^n $ Then the dimension of the space of polynomial solutions of the equationp[u] = 0 on ?n must be infinite 展开更多
关键词 quasi-homogeneous partial differential operator polynomial solution dimension of the space of solution method of analytic number theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部