A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformat...A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformation of R_1~4. Using the projective light-cone model, for those whose shape operators have three distinct real eigenvalues, we calculate the integrability conditions by constructing a scalar conformal invariant and a canonical moving frame in this paper. Similar to the Riemannian case, these hypersurfaces can be determined by the solutions to some system of partial differential equations.展开更多
If a K3 surface is a fiber of a flat projective morphisms over a connected noetherian scheme over the complex number field,then any smooth connected fiber is also a K3 surface.Observing this,Professor Nam-Hoon Lee ask...If a K3 surface is a fiber of a flat projective morphisms over a connected noetherian scheme over the complex number field,then any smooth connected fiber is also a K3 surface.Observing this,Professor Nam-Hoon Lee asked if the same is true for higher dimensional Calabi-Yau fibers.We shall give an explicit negative answer to his question in each dimension greater than or equal to three as well as a proof of his initial observation.展开更多
The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-fiat module if Tor1r(M, N) is GV-torsion for all R-modules N. In this paper, we introduc...The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-fiat module if Tor1r(M, N) is GV-torsion for all R-modules N. In this paper, we introduce the w-operation in Gorenstein homological algebra. An R-module M is called Ding w-flat if there exists an exact sequence of projective R-modules ... → P1 → P0 → p0 → p1 → ... such that M Im(P0 → p0) and such that the functor HomR (-,F) leaves the sequence exact whenever F is w-flat. Several well- known classes of rings are characterized in terms of Ding w-flat modules. Some examples are given to show that Ding w-flat modules lie strictly between projective modules and Gorenstein projective modules. The Ding w-flat dimension (of modules and rings) and the existence of Ding w-flat precovers are also studied.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11331002, 11471021 and 11601513)the Fundamental Research Funds for Central Universitiesthe Project of Fujian Provincial Department of Education (Grant No. JA15123)
文摘A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformation of R_1~4. Using the projective light-cone model, for those whose shape operators have three distinct real eigenvalues, we calculate the integrability conditions by constructing a scalar conformal invariant and a canonical moving frame in this paper. Similar to the Riemannian case, these hypersurfaces can be determined by the solutions to some system of partial differential equations.
文摘If a K3 surface is a fiber of a flat projective morphisms over a connected noetherian scheme over the complex number field,then any smooth connected fiber is also a K3 surface.Observing this,Professor Nam-Hoon Lee asked if the same is true for higher dimensional Calabi-Yau fibers.We shall give an explicit negative answer to his question in each dimension greater than or equal to three as well as a proof of his initial observation.
文摘The introduction of w-operation in the class of flat modules has been successful. Let R be a ring. An R-module M is called a w-fiat module if Tor1r(M, N) is GV-torsion for all R-modules N. In this paper, we introduce the w-operation in Gorenstein homological algebra. An R-module M is called Ding w-flat if there exists an exact sequence of projective R-modules ... → P1 → P0 → p0 → p1 → ... such that M Im(P0 → p0) and such that the functor HomR (-,F) leaves the sequence exact whenever F is w-flat. Several well- known classes of rings are characterized in terms of Ding w-flat modules. Some examples are given to show that Ding w-flat modules lie strictly between projective modules and Gorenstein projective modules. The Ding w-flat dimension (of modules and rings) and the existence of Ding w-flat precovers are also studied.