传统基于空中目标特征状态推理作战意图的方法,需要大量的领域专家知识对特征状态的权重、先验概率等进行量化,明确特征状态与意图之间的对应关系,而神经网络可以在领域专家知识不足条件下,通过自身训练得到特征状态与意图之间的规则。...传统基于空中目标特征状态推理作战意图的方法,需要大量的领域专家知识对特征状态的权重、先验概率等进行量化,明确特征状态与意图之间的对应关系,而神经网络可以在领域专家知识不足条件下,通过自身训练得到特征状态与意图之间的规则。针对反向传播(BP)算法在更新网络节点权值时收敛速度慢、容易陷入局部最优的问题,通过引入ReLU(Rectified Linear Unit)激活函数和自适应矩估计(Adam)优化算法,设计了基于深度神经网络的作战意图识别模型,提高了模型收敛速度,有效地防止陷入局部最优。仿真结果表明,所提方法能够有效识别空中目标作战意图,获得更高的识别率。展开更多
文摘传统基于空中目标特征状态推理作战意图的方法,需要大量的领域专家知识对特征状态的权重、先验概率等进行量化,明确特征状态与意图之间的对应关系,而神经网络可以在领域专家知识不足条件下,通过自身训练得到特征状态与意图之间的规则。针对反向传播(BP)算法在更新网络节点权值时收敛速度慢、容易陷入局部最优的问题,通过引入ReLU(Rectified Linear Unit)激活函数和自适应矩估计(Adam)优化算法,设计了基于深度神经网络的作战意图识别模型,提高了模型收敛速度,有效地防止陷入局部最优。仿真结果表明,所提方法能够有效识别空中目标作战意图,获得更高的识别率。