期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种改进可形变FCN的农作物害虫检测方法 被引量:5
1
作者 徐聪 王旭启 刘裕 《江苏农业科学》 北大核心 2022年第9期211-219,共9页
田间农作物害虫种类繁多,不同的生长阶段形态和颜色各异,在自然环境下采集的图像背景复杂,角度和尺度变化多样,从而使传统的害虫检测方法准确率较低。提出一种改进可形变全卷积神经网络(deformable fully convolution network,DFCN)的... 田间农作物害虫种类繁多,不同的生长阶段形态和颜色各异,在自然环境下采集的图像背景复杂,角度和尺度变化多样,从而使传统的害虫检测方法准确率较低。提出一种改进可形变全卷积神经网络(deformable fully convolution network,DFCN)的农作物害虫检测方法,该方法由编码模块和解码模块组成。编码模块在VGG16中采用了可形变卷积,能适应不同形状、位置和尺寸等几何形变的害虫图像。为了更好地保留害虫图像的纹理特征和背景特征,在编码模块中应用了混合池化,加快了网络的训练速度,提高了害虫检测的准确率;解码模块对编码的下采样层进行反卷积操作,最后应用像素级分类器获得有效的检测图像。在扩展的害虫图像数据集上与DFCN方法的分割精确度和平均交并比分别为90.43%、78.16%,较语义分割方法SegNet分别提高了3.27、3.72,单幅图像的识别时间为0.36 s,比SegNet加快了0.16 s。结果表明DFCN方法在害虫图像检测方面具有较高的准确率,分割速度快,可为复杂背景下农作物害虫检测提供一定的理论参考。 展开更多
关键词 作物害虫检测 全卷积神经网络 可形变卷积 可形变全卷积神经网络
下载PDF
基于多尺度注意力卷积网络的作物害虫检测 被引量:6
2
作者 张善文 邵彧 +1 位作者 齐国红 许新华 《江苏农业学报》 CSCD 北大核心 2021年第3期579-588,共10页
田间作物害虫检测是精确防治虫害和减少农药使用量的前提。由于田间害虫种类多,同种害虫个体间差异大,田间同一只害虫的大小、颜色、姿态、位置和背景变化多样、无规律,而且田间背景复杂、对比度低,使得传统的作物害虫检测方法的性能不... 田间作物害虫检测是精确防治虫害和减少农药使用量的前提。由于田间害虫种类多,同种害虫个体间差异大,田间同一只害虫的大小、颜色、姿态、位置和背景变化多样、无规律,而且田间背景复杂、对比度低,使得传统的作物害虫检测方法的性能不高。现有的基于深度学习的作物害虫检测方法需要大量高质量的标注训练样本,而且训练时间长。在VGG16模型的基础上,本研究提出一种基于多尺度注意力卷积网络(Multi-scale convolutional network with attention,MSCNA)的作物害虫检测方法。在MSCNA中,多尺度结构和注意力模型用于提取多尺度害虫检测特征,增强对形态较小害虫的检测能力;在训练过程中引入二阶项残差模块,减少网络损失和加速网络训练。试验结果表明,该方法能较好地检测到农田中各种各样、大小不同的害虫,检测平均准确率为92.44%。说明该方法能够实现自然场景下作物害虫的精准检测,可应用于田间作物害虫自动检测。 展开更多
关键词 作物害虫检测 注意力机制 卷积神经网络 多尺度注意力卷积网络
下载PDF
基于多尺度残差空间注意力轻量化U-Net的农业害虫检测方法 被引量:3
3
作者 李萍 刘裕 +1 位作者 师晓丽 张善文 《江苏农业科学》 北大核心 2023年第3期187-196,共10页
田间害虫的快速精准检测是作物害虫防治的前提。现有基于卷积神经网络的作物害虫检测方法常包含大量训练参数,难以应用于现实场景中。针对上述难点,提出1种基于多尺度残差空间注意力轻量化U-Net(Multi-scale residual spatial attention... 田间害虫的快速精准检测是作物害虫防治的前提。现有基于卷积神经网络的作物害虫检测方法常包含大量训练参数,难以应用于现实场景中。针对上述难点,提出1种基于多尺度残差空间注意力轻量化U-Net(Multi-scale residual spatial attention lightweight U-Net,简称MSRSALU-Net)的检测方法,并应用于田间害虫检测。MSRSALU-Net由编码模块与解码模块组成。在MSRSALU-Net编码模块中,多尺度残差卷积模块用于提取害虫多尺度信息以缓解害虫尺度变化对检测性能的影响;空间注意力机制模块用于提取特征的全局依赖以缓解复杂背景对检测性能的干扰。此外,使用残差连接路径模块连接MSRSALU-Net的编码模块与解码模块,以更好地传播特征信息。在构建的IP13数据库上进行试验,基于MSRSALU-Net的害虫检测方法的识别精度为95.11%。与基于UNet、注意力UNet、MultiResUNet的害虫检测方法相比,MSRSALU-Net检测精度分别提高11.85%、5.38%、2.41%。模型参数量与U-Net、注意力UNet、MultiResUNet相比,分别减少了25.81%、21.45%、18.39%。结果表明,提出的MSRSALU-Net能有效克服害虫尺度变化、背景复杂等因素干扰,实现害虫的快速精准识别。该方法可为田间作物害虫检测系统提供技术支撑。 展开更多
关键词 作物害虫检测 U-Net 空间注意力机制 多尺度残差空间注意力轻量化U-Net
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部