为研究热-力作用下花岗岩的破裂规律,采用MTS815 Flex Test GT岩石力学试验系统和PCI-Ⅱ声发射仪开展了黑云母花岗岩在不同围压和不同温度作用下的三轴压缩试验。研究结果表明:在20℃,40℃和60℃的温度作用下,声发射事件的密集程度和声...为研究热-力作用下花岗岩的破裂规律,采用MTS815 Flex Test GT岩石力学试验系统和PCI-Ⅱ声发射仪开展了黑云母花岗岩在不同围压和不同温度作用下的三轴压缩试验。研究结果表明:在20℃,40℃和60℃的温度作用下,声发射事件的密集程度和声发射累计振铃计数以及最大AE能率随着温度的升高而增加,宏观破裂角逐渐减小,岩石的脆性破坏特征逐渐增强;在60℃,90℃和130℃的温度作用下,声发射事件的密集程度和声发射累计振铃计数以及最大AE能率随着温度升高而减小,宏观破裂角逐渐增大,岩石的剪切破坏特征逐渐增强;同时,随着温度升高,剪切破坏造成大量低能量释放率的声发射产生,声发射密集区表现为由小部分能量率很大的声发射和数量较多、低能量释放率的声发射组成。展开更多
文摘为研究热-力作用下花岗岩的破裂规律,采用MTS815 Flex Test GT岩石力学试验系统和PCI-Ⅱ声发射仪开展了黑云母花岗岩在不同围压和不同温度作用下的三轴压缩试验。研究结果表明:在20℃,40℃和60℃的温度作用下,声发射事件的密集程度和声发射累计振铃计数以及最大AE能率随着温度的升高而增加,宏观破裂角逐渐减小,岩石的脆性破坏特征逐渐增强;在60℃,90℃和130℃的温度作用下,声发射事件的密集程度和声发射累计振铃计数以及最大AE能率随着温度升高而减小,宏观破裂角逐渐增大,岩石的剪切破坏特征逐渐增强;同时,随着温度升高,剪切破坏造成大量低能量释放率的声发射产生,声发射密集区表现为由小部分能量率很大的声发射和数量较多、低能量释放率的声发射组成。