Recently, Zhou et al. [Phys. Rev. A 79 (2009) 044304] proposed a scheme for transferring three-dimensional quantum states between remote atomic qubits confined in cavities connected by fibers through adiabatic passa...Recently, Zhou et al. [Phys. Rev. A 79 (2009) 044304] proposed a scheme for transferring three-dimensional quantum states between remote atomic qubits confined in cavities connected by fibers through adiabatic passage. In order to avoid the decoherence due to spontaneous emission, Zhou et al. utilized the large detuning atom-field interaction. In the present paper, we discuss the influence of dissipation on the scheme in both the resonant atom-field interaction case and the large detuning case. We numerically analyze the success probability and the transferring fidelity. It is shown that the resonant case is a preferable choice for the technique of the stimulated Raman adiabatic passage (STIRAP) due to the shorter operation time and the smaller probability of dissipation.展开更多
This paper presents a PV (photovoltaic) powered RO (reverse osmosis) plant for brackish water without batteries and a self-regulating pressure valve. The aim is to extract the maximum power from the PV module usin...This paper presents a PV (photovoltaic) powered RO (reverse osmosis) plant for brackish water without batteries and a self-regulating pressure valve. The aim is to extract the maximum power from the PV module using an MPPT (maximum power point tracking) technique for powering a solar water pump and maintain constant the pressure in the RO membranes by using the self-operated valve. A Buck type converter using the InCond (incremental conductance) MPPT was developed for this application. The MPPT chosen was simulated, tested and validated, showing an efficiency of 86.8%. The technical feasibility of the RO plant was made by PLC (programmable logic controller) and was tested for two salinity levels (1,000 and 1,500 mg/L of TDS (total dissolved solids)). These salinity levels chosen are commonly found in most brackish water wells of the semi-arid region of Northeastern Brazil. The RO plant could permeate 175.3 L/day of drinking water with 120 mg/L of TDS and specific energy consumption of 2.56 kWh/m3.展开更多
The recovery of Au by activated carbon fibers (ACFs) was carried out in a 40mm diameter, 1200mm height fluidized bed. The rates of reaction of the functional fibers with Au3+ in the pure aurum solution and in the auru...The recovery of Au by activated carbon fibers (ACFs) was carried out in a 40mm diameter, 1200mm height fluidized bed. The rates of reaction of the functional fibers with Au3+ in the pure aurum solution and in the aurum-containing wastewater were measured respectively at the different solution flow rates, and compared with the results under the static solution conditions. Experimental results indicated that the reaction rates in fluidization are notably higher than those in the static state and increase with the increase of solution flow rate. It demonstrates that the thickness of the concentration boundary layer is decreased and a uniform temperature field is established in the bed due to increasing of the turbulent extent with the relative fiber/solution velocity.展开更多
Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwa...Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.展开更多
The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between hu...The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between human and things. To accommodate the ever-growing data traffic with scarce spectrum resources, cognitive radio (CR) is considered a promising technology to improve spectrum utilization. We study the power control problem for secondary users in an underlay CR network. Unlike most existing studies which simplify the problem by considering only a single primary user or channel, we investigate a more realistic scenario where multiple primary users share multiple channels with secondary users. We formulate the power control problem as a non-cooperative game with coupled constraints, where the Pareto optimality and achievable total throughput can be obtained by a Nash equilibrium (NE) solution. To achieve NE of the game, we first propose a projected gradient based dynamic model whose equilibrium points are equivalent to the NE of the original game, and then derive a centralized algorithm to solve the problem. Simulation results show that the convergence and effectiveness of our proposed solution, emphasizing the proposed algorithm, are competitive. Moreover, we demonstrate the robustness of our proposed solution as the network size increases.展开更多
A W-band traveling-wave tube (TWT) with double-groove loaded folded waveguide structure (FWSWS) has been designed and numerically modelled. The nonlinear performance of such a TWT is investigated by a particle-in-cell...A W-band traveling-wave tube (TWT) with double-groove loaded folded waveguide structure (FWSWS) has been designed and numerically modelled. The nonlinear performance of such a TWT is investigated by a particle-in-cell code MAGIC3D. Simulation results indicate this TWT produces a saturated electromagnetic power of 170.2 W at 90 GHz, corresponding to 36.9 dB gain and 69.6 mm interaction distance. A comparison between the novel folded waveguide traveling-wave tube (FWTWT) and the conventional one is also carried out to verify the effect of groove loading on the large-signal performance of TWT. Within the same working conditions, the double groove-loaded FWTWT could obtain higher saturated output power and gain in a shorter interaction length. The maximum of output power and gain of this novel TWT is 58.6% and 10% higher than those of the conventional FWTWT, while the 3-dB bandwidth of TWT is reduced to 4 GHz. With the additional advantage of ease of fabrication based on micro-electro-mechanical systems (MEMS) technologies, the double-groove loaded FWSWS is suitable for a millimeter-wave TWT with high power capacity and gain.展开更多
文摘Recently, Zhou et al. [Phys. Rev. A 79 (2009) 044304] proposed a scheme for transferring three-dimensional quantum states between remote atomic qubits confined in cavities connected by fibers through adiabatic passage. In order to avoid the decoherence due to spontaneous emission, Zhou et al. utilized the large detuning atom-field interaction. In the present paper, we discuss the influence of dissipation on the scheme in both the resonant atom-field interaction case and the large detuning case. We numerically analyze the success probability and the transferring fidelity. It is shown that the resonant case is a preferable choice for the technique of the stimulated Raman adiabatic passage (STIRAP) due to the shorter operation time and the smaller probability of dissipation.
文摘This paper presents a PV (photovoltaic) powered RO (reverse osmosis) plant for brackish water without batteries and a self-regulating pressure valve. The aim is to extract the maximum power from the PV module using an MPPT (maximum power point tracking) technique for powering a solar water pump and maintain constant the pressure in the RO membranes by using the self-operated valve. A Buck type converter using the InCond (incremental conductance) MPPT was developed for this application. The MPPT chosen was simulated, tested and validated, showing an efficiency of 86.8%. The technical feasibility of the RO plant was made by PLC (programmable logic controller) and was tested for two salinity levels (1,000 and 1,500 mg/L of TDS (total dissolved solids)). These salinity levels chosen are commonly found in most brackish water wells of the semi-arid region of Northeastern Brazil. The RO plant could permeate 175.3 L/day of drinking water with 120 mg/L of TDS and specific energy consumption of 2.56 kWh/m3.
基金Natural Science Foundation of Guangdong Province (№: 970513) and The High Technology Research and Development Program of China (№: 863-715-004-0240)
文摘The recovery of Au by activated carbon fibers (ACFs) was carried out in a 40mm diameter, 1200mm height fluidized bed. The rates of reaction of the functional fibers with Au3+ in the pure aurum solution and in the aurum-containing wastewater were measured respectively at the different solution flow rates, and compared with the results under the static solution conditions. Experimental results indicated that the reaction rates in fluidization are notably higher than those in the static state and increase with the increase of solution flow rate. It demonstrates that the thickness of the concentration boundary layer is decreased and a uniform temperature field is established in the bed due to increasing of the turbulent extent with the relative fiber/solution velocity.
基金supported by the National Natural Science Foundation of China(Grant Nos.11135012,10925421,11375262 and 11220101002)the National Basic Research Program of China(Grant No.2013CBA01501)
文摘Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.
基金Project supported by the National Natural Science Foundation of China(Nos.61227801 and 61629101)Huawei Communications Technology Lab,Chinathe Open Research Foundation of Xi’an Jiaotong University,China(No.sklms2015015)
文摘The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between human and things. To accommodate the ever-growing data traffic with scarce spectrum resources, cognitive radio (CR) is considered a promising technology to improve spectrum utilization. We study the power control problem for secondary users in an underlay CR network. Unlike most existing studies which simplify the problem by considering only a single primary user or channel, we investigate a more realistic scenario where multiple primary users share multiple channels with secondary users. We formulate the power control problem as a non-cooperative game with coupled constraints, where the Pareto optimality and achievable total throughput can be obtained by a Nash equilibrium (NE) solution. To achieve NE of the game, we first propose a projected gradient based dynamic model whose equilibrium points are equivalent to the NE of the original game, and then derive a centralized algorithm to solve the problem. Simulation results show that the convergence and effectiveness of our proposed solution, emphasizing the proposed algorithm, are competitive. Moreover, we demonstrate the robustness of our proposed solution as the network size increases.
基金supported by the National Natural Science Foundation of China(Grant No. 60971038)the Talent Fund of Chinese Education Administration
文摘A W-band traveling-wave tube (TWT) with double-groove loaded folded waveguide structure (FWSWS) has been designed and numerically modelled. The nonlinear performance of such a TWT is investigated by a particle-in-cell code MAGIC3D. Simulation results indicate this TWT produces a saturated electromagnetic power of 170.2 W at 90 GHz, corresponding to 36.9 dB gain and 69.6 mm interaction distance. A comparison between the novel folded waveguide traveling-wave tube (FWTWT) and the conventional one is also carried out to verify the effect of groove loading on the large-signal performance of TWT. Within the same working conditions, the double groove-loaded FWTWT could obtain higher saturated output power and gain in a shorter interaction length. The maximum of output power and gain of this novel TWT is 58.6% and 10% higher than those of the conventional FWTWT, while the 3-dB bandwidth of TWT is reduced to 4 GHz. With the additional advantage of ease of fabrication based on micro-electro-mechanical systems (MEMS) technologies, the double-groove loaded FWSWS is suitable for a millimeter-wave TWT with high power capacity and gain.