根据对长江三角洲北部海安地区4个钻孔标志性沉积物(潮上带盐沼泥炭、高潮滩沉积)的年龄测定和高程测量,以及沉积物压实沉降量的分析研究,重建了本研究区全新世中期8.1~7.3 cal kyr BP和5.6~5.4 cal kyr BP的相对海平面位置。结...根据对长江三角洲北部海安地区4个钻孔标志性沉积物(潮上带盐沼泥炭、高潮滩沉积)的年龄测定和高程测量,以及沉积物压实沉降量的分析研究,重建了本研究区全新世中期8.1~7.3 cal kyr BP和5.6~5.4 cal kyr BP的相对海平面位置。结果显示,8.1~7.3 cal kyr BP海平面缓慢上升1.46m,上升速率仅为0.2cm/yr,与三角洲南部全新世早期海平面的快速上升(2cm/yr)形成鲜明对比,验证了冰盖控制下的全球海平面阶段性波动上升模式。对比长江三角洲地区海平面曲线发现,三角洲北部海平面曲线较南部低5~6m,长江三角洲海平面曲线与世界各地海平面曲线也存在明显差异,分析认为主要是由长江口地区的差异性沉降和中国东部边缘海的水均衡作用两个因素引起的。展开更多
To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exer...To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.展开更多
Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain ene...Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain energy release and the stored strain energy of accumulated dislocations reach the surface energy of a crack,the fatigue crack will initiate in materials.According to this model,for multiaxial stress condition,the orientation of the crack initiation and the initiation life can be deduced from the energy equilibrium equation.For the uniaxial fatigue loading with mean stress,the relation between the maximum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life diagram.If the ratio of the mean stress to stress amplitude is less than a critical value-0.17,and the stress amplitude keeps constant,the fatigue crack initiation life will decrease with the increase of the compress mean stress.In this model,the mean stress does not cause damage accumulation with the fatigue cycles in crack initiation.For this reason,the loading sequence of different load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule.The procedure of estimating the damage under random loading is also discussed.展开更多
文摘根据对长江三角洲北部海安地区4个钻孔标志性沉积物(潮上带盐沼泥炭、高潮滩沉积)的年龄测定和高程测量,以及沉积物压实沉降量的分析研究,重建了本研究区全新世中期8.1~7.3 cal kyr BP和5.6~5.4 cal kyr BP的相对海平面位置。结果显示,8.1~7.3 cal kyr BP海平面缓慢上升1.46m,上升速率仅为0.2cm/yr,与三角洲南部全新世早期海平面的快速上升(2cm/yr)形成鲜明对比,验证了冰盖控制下的全球海平面阶段性波动上升模式。对比长江三角洲地区海平面曲线发现,三角洲北部海平面曲线较南部低5~6m,长江三角洲海平面曲线与世界各地海平面曲线也存在明显差异,分析认为主要是由长江口地区的差异性沉降和中国东部边缘海的水均衡作用两个因素引起的。
基金Foundation item: Project(2011CB707201) supported by the National Basic Research Program of China Project(10JJ5058) supported by the Natural Science Foundation of Hunan Province, China
文摘To improve the energy utilization efficiency of internal combustion (IC) engine, exergy analysis was conducted on a passenger car gasoline engine. According to the thermodynamic theory of IC engine, in-cylinder exergy balance model was built. The working processes of gasoline engine were simulated by using the GT-power. In this way, the required parameters were calculated and then gasoline engine exergy balance was obtained by programming on computer. On this basis, the influences of various parameters on exergy balance were analyzed. Results show that, the proportions of various forms of exergy in gasoline engine from high to low are irreversible loss, effective work, exhaust gas exergy and heat transfer exergy. Effective exergy proportion fluctuates with cylinder volumetric efficiency at full load, while it always increases with break mean effective pressure (BMEP) at part load. Exhaust gas exergy proportion is more sensitive to speed, and it increases with speed increasing except at the highest speed. The lower proportion of heat transfer exergy appears at high speed and high load. Irreversible loss is mainly influenced by load. At part load, higher BMEP results in lower proportion of irreversible loss; at full load, the proportion of irreversible loss changes little except at the highest speed.
基金supported by the National Basic Research Program of China (Grant No. 2012CB937500)the National Natural Science Foundation of China (Grant Nos. 11072243 and 11202210)
文摘Based on Tanaka and Mura’s fatigue model and Griffith theory for fracture,an energy-equilibrium model was proposed to explain the complex stress effect on fatigue behavior.When the summation of the elastic strain energy release and the stored strain energy of accumulated dislocations reach the surface energy of a crack,the fatigue crack will initiate in materials.According to this model,for multiaxial stress condition,the orientation of the crack initiation and the initiation life can be deduced from the energy equilibrium equation.For the uniaxial fatigue loading with mean stress,the relation between the maximum stress or the minimum stress and the stress amplitude is in agreement with an ellipse equation on the constant life diagram.If the ratio of the mean stress to stress amplitude is less than a critical value-0.17,and the stress amplitude keeps constant,the fatigue crack initiation life will decrease with the increase of the compress mean stress.In this model,the mean stress does not cause damage accumulation with the fatigue cycles in crack initiation.For this reason,the loading sequence of different load levels would induce the cumulative damage to deviate from the Palmgren-Miner cumulative damage rule.The procedure of estimating the damage under random loading is also discussed.