To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated....To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.展开更多
This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and i...This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.展开更多
基金Project(51105287)supported by the National Natural Science Foundation of China
文摘To get better tracking performance of attitude command over the reentry phase of vehicles, the use of state-dependent Riccati equation (SDRE) method for attitude controller design of reentry vehicles was investigated. Guidance commands are generated based on optimal guidance law. SDRE control method employs factorization of the nonlinear dynamics into a state vector and state dependent matrix valued function. State-dependent coefficients are derived based on reentry motion equations in pitch and yaw channels. Unlike constant weighting matrix Q, elements of Q are set as the functions of state error so as to get satisfactory feedback and eliminate state error rapidly, then formulation of SDRE is realized. Riccati equation is solved real-timely with Schur algorithm. State feedback control law u(x) is derived with linear quadratic regulator (LQR) method. Simulation results show that SDRE controller steadily tracks attitude command, and impact point error of reentry vehicle is acceptable. Compared with PID controller, tracking performance of attitude command using SDRE controller is better with smaller control surface deflection. The attitude tracking error with SDRE controller is within 5°, and the control deflection is within 30°.
文摘This paper discusses a design method for the control system of a weigh feeder that supplies powder and granular material at a constant rate. Most weigh feeders employed in industry are controlled by proportional and integral (PI) compensation, and the control performance is decided by the selection of parameters. To attain advanced control performance by PI control, the PI parameters are designed on the basis of generalized minimum variance control (GMVC). In this study, to achieve user-specified control performance by GMVC-based PI control, the design parameters of GMVC are automatically adjusted using a performance-adaptive method. The control performance discussed in this study consists of the variance of the control error and that of the difference in the control input. In a conventional performance-adaptive method, the variance of the control error is reduced. In this study, to reduce energy consumption and to achieve user-specified control performance, the variance of the difference in the control input is specified and the design parameter is determined. To demonstrate its effectiveness, the proposed method is applied to an actual weigh feeder.