A large portion of irrigation farmers make use of subjective (intuition) irrigation scheduling methods as supposed to objective or scientific irrigation scheduling methods, which need to be changed. The BEsproeiings...A large portion of irrigation farmers make use of subjective (intuition) irrigation scheduling methods as supposed to objective or scientific irrigation scheduling methods, which need to be changed. The BEsproeiingsWAterbestuursprogram (BEWAB+) irrigation scheduling programme is based on the water balance equation and needs: (1) a crop production function; (2) a relative consumptive water demand curve and (3) an allowable depletion subroutine. The objective of this paper was to describe research aimed at obtaining information on (1) and (2) for pea and also to describe the effect of water application on yield and water use of pea. BEWAB+ uses this information to estimate the daily irrigation water requirements for a particular soil-crop-atmosphere system under irrigation. A field experiment, based on published line-source irrigation methodology, was conducted on a 3 m deep loamy fine sand Bainsvlei or Ustic Quartzipsamment soil near Bloemfontein (26°08′S; 29°01′E) in South Africa. Results showed that there is a linear relationship of the form Ys = 8.07ET - 249 (r2 = 0.91), where Ys is the seed yield of pea (kg/ha) and ET is evapotranspiration for the growing season (mm). The relative consumptive water demand curve is represented by the following third order polynomial function that describes the relationship between time and relative ET for a pea growing season of 120 days: ETrelx = 0.09419646 - 0.01302413x + 0.00059008x2 - 0.00000371x3. ETrelz denotes relative ET and x denotes time in days. A workable balance between practical problem solving and advanced irrigation science has been established with BEWAB+. Pre-plant irrigation schedules can be made for semi-arid areas with the BEWAB+ programme using easily obtainable inputs, like target yield, soil depth and soil particle size distribution information.展开更多
The study examined the impact of using power tiller as a means of mechanizing lowland rice production in Nigeria. The study was carried out in Bida area, Niger State, where the sawah rice production was disseminated b...The study examined the impact of using power tiller as a means of mechanizing lowland rice production in Nigeria. The study was carried out in Bida area, Niger State, where the sawah rice production was disseminated by Watershed Initiative in Nigeria (WIN). And in Ajase Ipo of Kwara State, some of the parameters assessed during the study included average speed of operation, average wheel slip/travel reduction, average draught of implement, and fuel consumption. The cost of operation and yield over five years of usage at Niger State and two years in Kwara State was determined and it was therefore concluded that the power tiller is the most appropriate field machinery for tillage operations such as puddling, leveling on lowland rice production in Nigeria.展开更多
For the purpose of enhancing automobile safety and the effectiveness of recalls,increasing manufacturers' quality control capabilities,and reducing defects,we investigated thestatus of recalls over the last five y...For the purpose of enhancing automobile safety and the effectiveness of recalls,increasing manufacturers' quality control capabilities,and reducing defects,we investigated thestatus of recalls over the last five years.We have examined patterns and trends in motor vehiclesafety recalls using databases from China,Europe and the United States.A recall rate parameterwas developed to evaluate the level of recall enforcement based on analyzing the reasonsfor recalls and manufactures' characteristics.Moreover,there were substantial differencesin the recall rates of China compared with those in other countries,indicating that Chinese manufacturersneed to take more active action in recall.展开更多
The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on co...The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on colour of the leaf. Field experiments were conducted during 2011 to 2013 at Ludhiana, India to assess the need for basal N application and to establish critical threshold values of leaf greenness as measured by LCC and SPAD meter for formulating strategies for in-season management of fertilizer N in dry direct-seeded rice(DDSR). Avoiding application of N at sowing did not adversely affect rice grain yield, indicating that basal N application in DDSR was not necessary and might lead to reduced N-use efficiency. Monitoring N uptake rate during the growing season of DDSR suggested that N uptake rate peaked at the two growth stages: maximum tillering(42 to 56 days after sowing(DAS))and panicle initiation stages(70 to 84 DAS). Using the Cate-Nelson procedure, critical LCC and SPAD meter values for fertilizer N application worked out to be 4 and 37, respectively. Real-time fertilizer N management strategy based on applying 30 kg N ha-1whenever SPAD meter or LCC readings fell below the critical values maintained optimum rice yields along with higher N-use efficiency than that observed by following blanket recommendation for fertilizer N in the region. The fixed-time variable-dose strategy consisted of applying prescriptive doses of 20 kg N ha-1at 14 DAS and 30 kg N ha-1at 28 DAS and corrective doses of 30, 40 or 50 kg N ha-1at 49 and 70 DAS depending upon LCC shade to be ≥ 4, 4–3.5, or < 3.5 and SPAD meter readings to be ≥ 40, 40–35, or< 35, respectively. This strategy also resulted in optimal rice yield along with higher N-use efficiency as compared to the blanket recommendation. This study revealed that in DDSR, fertilizer N could be managed more efficiently using the tools of LCC and SPAD meter than the current blanket recommendation.展开更多
文摘A large portion of irrigation farmers make use of subjective (intuition) irrigation scheduling methods as supposed to objective or scientific irrigation scheduling methods, which need to be changed. The BEsproeiingsWAterbestuursprogram (BEWAB+) irrigation scheduling programme is based on the water balance equation and needs: (1) a crop production function; (2) a relative consumptive water demand curve and (3) an allowable depletion subroutine. The objective of this paper was to describe research aimed at obtaining information on (1) and (2) for pea and also to describe the effect of water application on yield and water use of pea. BEWAB+ uses this information to estimate the daily irrigation water requirements for a particular soil-crop-atmosphere system under irrigation. A field experiment, based on published line-source irrigation methodology, was conducted on a 3 m deep loamy fine sand Bainsvlei or Ustic Quartzipsamment soil near Bloemfontein (26°08′S; 29°01′E) in South Africa. Results showed that there is a linear relationship of the form Ys = 8.07ET - 249 (r2 = 0.91), where Ys is the seed yield of pea (kg/ha) and ET is evapotranspiration for the growing season (mm). The relative consumptive water demand curve is represented by the following third order polynomial function that describes the relationship between time and relative ET for a pea growing season of 120 days: ETrelx = 0.09419646 - 0.01302413x + 0.00059008x2 - 0.00000371x3. ETrelz denotes relative ET and x denotes time in days. A workable balance between practical problem solving and advanced irrigation science has been established with BEWAB+. Pre-plant irrigation schedules can be made for semi-arid areas with the BEWAB+ programme using easily obtainable inputs, like target yield, soil depth and soil particle size distribution information.
文摘The study examined the impact of using power tiller as a means of mechanizing lowland rice production in Nigeria. The study was carried out in Bida area, Niger State, where the sawah rice production was disseminated by Watershed Initiative in Nigeria (WIN). And in Ajase Ipo of Kwara State, some of the parameters assessed during the study included average speed of operation, average wheel slip/travel reduction, average draught of implement, and fuel consumption. The cost of operation and yield over five years of usage at Niger State and two years in Kwara State was determined and it was therefore concluded that the power tiller is the most appropriate field machinery for tillage operations such as puddling, leveling on lowland rice production in Nigeria.
文摘For the purpose of enhancing automobile safety and the effectiveness of recalls,increasing manufacturers' quality control capabilities,and reducing defects,we investigated thestatus of recalls over the last five years.We have examined patterns and trends in motor vehiclesafety recalls using databases from China,Europe and the United States.A recall rate parameterwas developed to evaluate the level of recall enforcement based on analyzing the reasonsfor recalls and manufactures' characteristics.Moreover,there were substantial differencesin the recall rates of China compared with those in other countries,indicating that Chinese manufacturersneed to take more active action in recall.
基金supported by the Indian Council of Cultural Relations and Egypt Government through the Cultural Exchange Programme
文摘The need to maintain high rice yields and improve fertilizer nitrogen(N)-use efficiency has fueled the use of tools such as leaf colour chart(LCC) and chlorophyll meter(SPAD meter) in managing fertilizer N based on colour of the leaf. Field experiments were conducted during 2011 to 2013 at Ludhiana, India to assess the need for basal N application and to establish critical threshold values of leaf greenness as measured by LCC and SPAD meter for formulating strategies for in-season management of fertilizer N in dry direct-seeded rice(DDSR). Avoiding application of N at sowing did not adversely affect rice grain yield, indicating that basal N application in DDSR was not necessary and might lead to reduced N-use efficiency. Monitoring N uptake rate during the growing season of DDSR suggested that N uptake rate peaked at the two growth stages: maximum tillering(42 to 56 days after sowing(DAS))and panicle initiation stages(70 to 84 DAS). Using the Cate-Nelson procedure, critical LCC and SPAD meter values for fertilizer N application worked out to be 4 and 37, respectively. Real-time fertilizer N management strategy based on applying 30 kg N ha-1whenever SPAD meter or LCC readings fell below the critical values maintained optimum rice yields along with higher N-use efficiency than that observed by following blanket recommendation for fertilizer N in the region. The fixed-time variable-dose strategy consisted of applying prescriptive doses of 20 kg N ha-1at 14 DAS and 30 kg N ha-1at 28 DAS and corrective doses of 30, 40 or 50 kg N ha-1at 49 and 70 DAS depending upon LCC shade to be ≥ 4, 4–3.5, or < 3.5 and SPAD meter readings to be ≥ 40, 40–35, or< 35, respectively. This strategy also resulted in optimal rice yield along with higher N-use efficiency as compared to the blanket recommendation. This study revealed that in DDSR, fertilizer N could be managed more efficiently using the tools of LCC and SPAD meter than the current blanket recommendation.