The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new coun- termeasur...The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new coun- termeasures to combat the threat of influenza. Here, replication-competent 1AVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic poten- tial. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two pas- sages in embryonated chicken eggs. As a proof of concept, we demonstrated that these reporter viruses, used in combination with a high-content imaging system, can serve as a convenient and rapid tool for the screening of antivirals and host factors involved in the virus life cycle. Moreover. the reporter viruses demonstrated similar growth properties and tissue tropism as their parental viruses in mice, among which the HTN9 NA-Venus virus could potentially be used in ex vivo studies to better understand H7N9 pathogenesis or to develop novel therapeutics.展开更多
基金supported by the National Natural Science Foundation of China(31472215,31521005,31422054,31402206)the National Key R&D Program of China(2016YFD0500205)
文摘The generation and application of replication-competent influenza A virus (IAV) expressing a reporter gene represent a valuable tool to elucidate the mechanism of viral pathogenesis and establish new coun- termeasures to combat the threat of influenza. Here, replication-competent 1AVs with a neuraminidase (NA) segment harboring a fluorescent reporter protein, Venus, were generated in the background of H5N1, H7N9, and H9N2 influenza viruses, the three subtypes of viruses with imminent pandemic poten- tial. All three reporter viruses maintained virion morphology, replicated with similar or slightly reduced titers relative to their parental viruses, and stably expressed the fluorescent signal for at least two pas- sages in embryonated chicken eggs. As a proof of concept, we demonstrated that these reporter viruses, used in combination with a high-content imaging system, can serve as a convenient and rapid tool for the screening of antivirals and host factors involved in the virus life cycle. Moreover. the reporter viruses demonstrated similar growth properties and tissue tropism as their parental viruses in mice, among which the HTN9 NA-Venus virus could potentially be used in ex vivo studies to better understand H7N9 pathogenesis or to develop novel therapeutics.