Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system...Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system in cloud environment and to verify which outsourced service leads to the problem. Similarly, the cloud service provider cannot simply trust the data computation applications. At last,the verification data itself may also leak the sensitive information from the cloud service provider and data owner. We propose a new three-level definition of the verification, threat model, corresponding trusted policies based on different roles for outsourced big data system in cloud. We also provide two policy enforcement methods for building trusted data computation environment by measuring both the Map Reduce application and its behaviors based on trusted computing and aspect-oriented programming. To prevent sensitive information leakage from verification process,we provide a privacy-preserved verification method. Finally, we implement the TPTVer, a Trusted third Party based Trusted Verifier as a proof of concept system. Our evaluation and analysis show that TPTVer can provide trusted verification for multi-layered outsourced big data system in the cloud with low overhead.展开更多
The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in...The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.展开更多
Digital evidences can be obtained from computers and various kinds of digital devices, such as telephones, mp3/mp4 players, printers, cameras, etc. Telephone Call Detail Records (CDRs) are one important source of di...Digital evidences can be obtained from computers and various kinds of digital devices, such as telephones, mp3/mp4 players, printers, cameras, etc. Telephone Call Detail Records (CDRs) are one important source of digital evidences that can identify suspects and their partners. Law enforcement authorities may intercept and record specific conversations with a court order and CDRs can be obtained from telephone service providers. However, the CDRs of a suspect for a period of time are often fairly large in volume. To obtain useful information and make appropriate decisions automatically from such large amount of CDRs become more and more difficult. Current analysis tools are designed to present only numerical results rather than help us make useful decisions. In this paper, an algorithm based on Fuzzy Decision Tree (FDT) for analyzing CDRs is proposed. We conducted experimental evaluation to verify the proposed algorithm and the result is very promising.展开更多
基金partially supported by grants from the China 863 High-tech Program (Grant No. 2015AA016002)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20131103120001)+2 种基金the National Key Research and Development Program of China (Grant No. 2016YFB0800204)the National Science Foundation of China (No. 61502017)the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201710005024)
文摘Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system in cloud environment and to verify which outsourced service leads to the problem. Similarly, the cloud service provider cannot simply trust the data computation applications. At last,the verification data itself may also leak the sensitive information from the cloud service provider and data owner. We propose a new three-level definition of the verification, threat model, corresponding trusted policies based on different roles for outsourced big data system in cloud. We also provide two policy enforcement methods for building trusted data computation environment by measuring both the Map Reduce application and its behaviors based on trusted computing and aspect-oriented programming. To prevent sensitive information leakage from verification process,we provide a privacy-preserved verification method. Finally, we implement the TPTVer, a Trusted third Party based Trusted Verifier as a proof of concept system. Our evaluation and analysis show that TPTVer can provide trusted verification for multi-layered outsourced big data system in the cloud with low overhead.
基金supported in part by the National Nature Science Foundation of China under Grant No.61402413 and 61340058 the "Six Kinds Peak Talents Plan" project of Jiangsu Province under Grant No.ll-JY-009+2 种基金the Nature Science Foundation of Zhejiang Province under Grant No.LY14F020019, Z14F020006 and Y1101183the China Postdoctoral Science Foundation funded project under Grant No.2012M511732Jiangsu Province Postdoctoral Science Foundation funded project Grant No.1102014C
文摘The Cloud is increasingly being used to store and process big data for its tenants and classical security mechanisms using encryption are neither sufficiently efficient nor suited to the task of protecting big data in the Cloud.In this paper,we present an alternative approach which divides big data into sequenced parts and stores them among multiple Cloud storage service providers.Instead of protecting the big data itself,the proposed scheme protects the mapping of the various data elements to each provider using a trapdoor function.Analysis,comparison and simulation prove that the proposed scheme is efficient and secure for the big data of Cloud tenants.
文摘Digital evidences can be obtained from computers and various kinds of digital devices, such as telephones, mp3/mp4 players, printers, cameras, etc. Telephone Call Detail Records (CDRs) are one important source of digital evidences that can identify suspects and their partners. Law enforcement authorities may intercept and record specific conversations with a court order and CDRs can be obtained from telephone service providers. However, the CDRs of a suspect for a period of time are often fairly large in volume. To obtain useful information and make appropriate decisions automatically from such large amount of CDRs become more and more difficult. Current analysis tools are designed to present only numerical results rather than help us make useful decisions. In this paper, an algorithm based on Fuzzy Decision Tree (FDT) for analyzing CDRs is proposed. We conducted experimental evaluation to verify the proposed algorithm and the result is very promising.