The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled so...The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.展开更多
To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is ...To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is not economically viable for most countries. However, oil and fossil fuel prices are known to be highly volatile, and the Paris Agreement calls for a reduction in fossil fuel use. Under these circumstances, heat supplied by nuclear power may abruptly return to favor. To prepare for such a scenario, this study will investigate design considerations for a prototypical modem nuclear power plant, the Korean APR1400 (advanced power reactor 1400) (e.g., Shin Kori Units 3, 4, Shin Hanul 1, 2, Barakah Units 1, 2, 3, 4). Nuclear cogeneration can impact balance of plant system and component design for the condensate, feedwater, extraction steam, and heater drain systems. The APR1400 turbine cycle will be reviewed for a parametric range of pressures and flow rates of the steam exported for cogeneration to identify major design challenges.展开更多
Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basi...Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basin in China where ecological compensation pilot programs concerning water resources and water supply services are top priorities for ecosystem service protection. We analyzed spatial and temporal patterns associated with generation and use of water supply services in the Dongjiang Lake basin using the In VEST model, socio-economic data and water resource data. We found that between 1995 and 2010, water yield in the Dongjiang Lake basin and its beneficiary areas increased before declining, varying 9350–12 400 m3 ha-1 y-1; average water yield peaked in 2000. The spatial distribution patterns of water yield during these years are similar, progressively decreasing from upstream to downstream with a remarkable reduction in surrounding areas of city clusters. Average water consumption of the basin and its beneficiary areas ranged from 2900–4450 m3 ha-1 y-1 between 1995 and 2010; the spatial distribution patterns of water consumption during these years are similar, dropping gradually from urban construction land to its surroundings with a stronger gradient between urban and rural areas. More water was consumed on both banks and surroundings of the lake. From 1995 to 2010, water supply fell short of demand for urban construction land and its proximity as well as areas along the lake. Water supply services were able to satisfy needs in other regions. The Changsha-Zhuzhou-Xiangtan city cluster suffers from the most strained water supply.展开更多
The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water fr...The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.展开更多
In general, China is short of water resources and some regions even experience a shortage of daily water supply. This could threaten the stability and economic development of the nation. A study on the water storage v...In general, China is short of water resources and some regions even experience a shortage of daily water supply. This could threaten the stability and economic development of the nation. A study on the water storage variations is especially important for the water management and storage prediction in three largest river basins of China, namely, Yangtze, Yellow, and Zhujiang, where the most dense population and leading economic regions are located. The satellite gravity mission GRACE (Gravity Recovery and Climate Experiment) provides an opportunity to macroseopically identify water (or mass) variations in the Earth's system with a spatial resolution of 300-400 km and a temporal resolution of about one month. We use the first release of the DEOS (Delft Institute of Earth Observation and Space Systems) Mass Transport (DMT-1) model based on GRACE data to analyze water storage changes in the three river basins. The DMT-1 model consists of monthly solutions, which are computed using an innovative methodology. The methodology includes, in particular, the application of a statistically optimal Wiener-type filter based on full varianee-covariance matrices of noise and signal. This results in particularly sharp mass variation maps. Taking one monthly solution as an example, we compare the results derived from the DMT-1 model with ones produced with the standard post-processing scheme based on a combination of the de-striping and Gaussian filtering. The comparison shows that the DMT-1 model outperforms the other models and is suitable for the analysis of the mass changes in river basins. A subset of the DMT-1 solutions in the interval between February 2003 and May 2008 is used to estimate the secular trends and seasonal variations for the three river basins. The estimated trends show that the water storage of the Yellow River basin does not have significant changes, while the Zhujiang and Yangtze river basins have a large and statistically significant water storage increase. The estimation of seasonal variations demonstrates that the water storage variations in Yangtze and Zhujiang river basins are almost in the same phase. The amplitude of variations in the Zhujiang River basin is larger than that in Yangtze. No clear annual variations are observed in the Yellow River basin. The observed water storage variations generally coincide with the observations and conclusions presented in the hydrological reports of the Chinese Ministry of Water Resources展开更多
基金supported by the National Basic Research Program of China (973 Program,2012CB956202)the National Key Technology R&D Program of China(2012BAC22B04)+1 种基金the National Natural Science Foundation of China (41105048)the Special Fund for Meteorological scientific Research in the Public Interest (GYHY201106028)
文摘The changes in hydrological processes in the Yellow River basin were simulated by using the Community Land Model(CLM,version 3.5),driven by historical climate data observed from 1951 to 2008.A comparison of modeled soil moisture and runoff with limited observations in the basin suggests a general drying trend in simulated soil moisture,runoff,and precipitation-evaporation balance(P-E) in most areas of the Yellow River basin during the observation period.Furthermore,annual soil moisture,runoff,and P-E averaged over the entire basin have declined by 3.3%,82.2%,and 32.1%,respectively.Significant drying trends in soil moisture appear in the upper and middle reaches of the basin,whereas a significant trend in declining surface runoff and P-E occurred in the middle reaches and the southeastern part of the upper reaches.The overall decreasing water availability is characterized by large spatial and temporal variability.
文摘To date, nuclear cogeneration applications have been limited, primarily to district heating in Eastern Europe and heavy water production in Canada. With the current global price for oil and energy, this technology is not economically viable for most countries. However, oil and fossil fuel prices are known to be highly volatile, and the Paris Agreement calls for a reduction in fossil fuel use. Under these circumstances, heat supplied by nuclear power may abruptly return to favor. To prepare for such a scenario, this study will investigate design considerations for a prototypical modem nuclear power plant, the Korean APR1400 (advanced power reactor 1400) (e.g., Shin Kori Units 3, 4, Shin Hanul 1, 2, Barakah Units 1, 2, 3, 4). Nuclear cogeneration can impact balance of plant system and component design for the condensate, feedwater, extraction steam, and heater drain systems. The APR1400 turbine cycle will be reviewed for a parametric range of pressures and flow rates of the steam exported for cogeneration to identify major design challenges.
基金the National Science and Technology Support Program(2013BAC03B05)National Natural Science Foundation of China(31400411)
文摘Water-related ecosystem services is a hot topic in ecological research. Water supply services are crucial to regional water cycles and water quantity balance. The Dongjiang Lake basin is a national priority river basin in China where ecological compensation pilot programs concerning water resources and water supply services are top priorities for ecosystem service protection. We analyzed spatial and temporal patterns associated with generation and use of water supply services in the Dongjiang Lake basin using the In VEST model, socio-economic data and water resource data. We found that between 1995 and 2010, water yield in the Dongjiang Lake basin and its beneficiary areas increased before declining, varying 9350–12 400 m3 ha-1 y-1; average water yield peaked in 2000. The spatial distribution patterns of water yield during these years are similar, progressively decreasing from upstream to downstream with a remarkable reduction in surrounding areas of city clusters. Average water consumption of the basin and its beneficiary areas ranged from 2900–4450 m3 ha-1 y-1 between 1995 and 2010; the spatial distribution patterns of water consumption during these years are similar, dropping gradually from urban construction land to its surroundings with a stronger gradient between urban and rural areas. More water was consumed on both banks and surroundings of the lake. From 1995 to 2010, water supply fell short of demand for urban construction land and its proximity as well as areas along the lake. Water supply services were able to satisfy needs in other regions. The Changsha-Zhuzhou-Xiangtan city cluster suffers from the most strained water supply.
基金supported by the Major International(Regional)Cooperation Project(Grant No.51320105010)the National Natural Science Foundation of China(Grant Nos.51379027,51109025)the Fundamental Research Fund for the Central Universities(Grant No.DUT13JS06)
文摘The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.
基金supported by National Natural Science Foundation of China (Grant No. 40874004)National Basic Research Program of China (Grant No. 2009AA121401)the "111 Project" of China (Grant No. B07037)
文摘In general, China is short of water resources and some regions even experience a shortage of daily water supply. This could threaten the stability and economic development of the nation. A study on the water storage variations is especially important for the water management and storage prediction in three largest river basins of China, namely, Yangtze, Yellow, and Zhujiang, where the most dense population and leading economic regions are located. The satellite gravity mission GRACE (Gravity Recovery and Climate Experiment) provides an opportunity to macroseopically identify water (or mass) variations in the Earth's system with a spatial resolution of 300-400 km and a temporal resolution of about one month. We use the first release of the DEOS (Delft Institute of Earth Observation and Space Systems) Mass Transport (DMT-1) model based on GRACE data to analyze water storage changes in the three river basins. The DMT-1 model consists of monthly solutions, which are computed using an innovative methodology. The methodology includes, in particular, the application of a statistically optimal Wiener-type filter based on full varianee-covariance matrices of noise and signal. This results in particularly sharp mass variation maps. Taking one monthly solution as an example, we compare the results derived from the DMT-1 model with ones produced with the standard post-processing scheme based on a combination of the de-striping and Gaussian filtering. The comparison shows that the DMT-1 model outperforms the other models and is suitable for the analysis of the mass changes in river basins. A subset of the DMT-1 solutions in the interval between February 2003 and May 2008 is used to estimate the secular trends and seasonal variations for the three river basins. The estimated trends show that the water storage of the Yellow River basin does not have significant changes, while the Zhujiang and Yangtze river basins have a large and statistically significant water storage increase. The estimation of seasonal variations demonstrates that the water storage variations in Yangtze and Zhujiang river basins are almost in the same phase. The amplitude of variations in the Zhujiang River basin is larger than that in Yangtze. No clear annual variations are observed in the Yellow River basin. The observed water storage variations generally coincide with the observations and conclusions presented in the hydrological reports of the Chinese Ministry of Water Resources