This paper describes a household model of the rainwater harvesting system in residential development of Tlaquepaque Jalisco Mexico. Harvested rainwater is estimated for designing a rainwater catchment system which ref...This paper describes a household model of the rainwater harvesting system in residential development of Tlaquepaque Jalisco Mexico. Harvested rainwater is estimated for designing a rainwater catchment system which reflects the maximum water supply to a household.Based on the estimation of the harvested rainwater the total water demand is calculated in order to explore the possible uses of rainwater. Major components in the rainwater catchment system are as follows catchment area downspout roof drain pipe and first flush tank cistern infiltration well pumping station and filtering system and ultraviolet UV water treatment.The rainwater harvesting system is designed to operate as the part of the central water supply system.This paper exposes the process of design and construction and its cost.In this way it aims to establish a technical and conceptual reference which enables the citizens to design their rainwater systems and their construction. This model will produce an important experience that can help to improve the systems in a Mexican context.It can be also useful for the international community.展开更多
The seasonal heat storage tank is the most important component of the SDH (solar district heating) system, which allows significant increase in the share of solar energy in heat supply in comparison with conventiona...The seasonal heat storage tank is the most important component of the SDH (solar district heating) system, which allows significant increase in the share of solar energy in heat supply in comparison with conventional solar systems with short-term accumulation of heat. The adverse impact of their investment sophistication on competitiveness may be compensated by the increased use. For example: Cooperation with heat pump allows to increase the accumulation capacity of the seasonal heat storage tank and causes the direct use of heating energy and accumulation of cooling energy produced by heat pump. In the final stage of the heating period, it can be used to remote cooling supplied buildings. Experimentation on mathematical model is possible to obtain valuable insights about the dynamics of the processes of charging and discharging in the seasonal storage tank and subsequently used in the design, implementation and operation.展开更多
文摘This paper describes a household model of the rainwater harvesting system in residential development of Tlaquepaque Jalisco Mexico. Harvested rainwater is estimated for designing a rainwater catchment system which reflects the maximum water supply to a household.Based on the estimation of the harvested rainwater the total water demand is calculated in order to explore the possible uses of rainwater. Major components in the rainwater catchment system are as follows catchment area downspout roof drain pipe and first flush tank cistern infiltration well pumping station and filtering system and ultraviolet UV water treatment.The rainwater harvesting system is designed to operate as the part of the central water supply system.This paper exposes the process of design and construction and its cost.In this way it aims to establish a technical and conceptual reference which enables the citizens to design their rainwater systems and their construction. This model will produce an important experience that can help to improve the systems in a Mexican context.It can be also useful for the international community.
文摘The seasonal heat storage tank is the most important component of the SDH (solar district heating) system, which allows significant increase in the share of solar energy in heat supply in comparison with conventional solar systems with short-term accumulation of heat. The adverse impact of their investment sophistication on competitiveness may be compensated by the increased use. For example: Cooperation with heat pump allows to increase the accumulation capacity of the seasonal heat storage tank and causes the direct use of heating energy and accumulation of cooling energy produced by heat pump. In the final stage of the heating period, it can be used to remote cooling supplied buildings. Experimentation on mathematical model is possible to obtain valuable insights about the dynamics of the processes of charging and discharging in the seasonal storage tank and subsequently used in the design, implementation and operation.