The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water fr...The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.展开更多
Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to ...Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.展开更多
基金supported by the Major International(Regional)Cooperation Project(Grant No.51320105010)the National Natural Science Foundation of China(Grant Nos.51379027,51109025)the Fundamental Research Fund for the Central Universities(Grant No.DUT13JS06)
文摘The joint operation of inter-basin water transfer-supply(IBWTS)project can be more complex when there is joint water demand in multi-reservoir system and multi-importing reservoirs simultaneously transferring water from exporting reservoir.In this study,a joint operating rule is proposed for the purpose of solving such complex operation problem.This rule is composed of a set of sub-rules,including hedging rule curves of virtual aggregation reservoir(i.e.equivalent reservoir)and other individual reservoirs,water-transfer rule curves of each individual reservoir,as well as some of important assisted rules.These assisted rules refer to allocation models for water transfer-supply.In the proposed rule,an equivalent reservoir is established to determine under what condition the water supply should be reduced and specify the total supplied water for joint water demand(i.e.aggregation method).Allocation models are developed to distribute the total transferred water into each importing reservoir and determine the water releases for joint water demand by each member reservoir of the aggregation system(i.e.decomposition method).And these models are integrated with a set of influence factors such as hydrologic characteristics,reservoir storage or vacant storage,regulating ability,water-supply pressure,and so on.The aggregation of multi-reservoirs and the disaggregation of water quantities are taken into a whole consideration to reduce the complexity in reallocation of water target storage or water release.Finally,the proposed rule is applied to the North-line IBWTS Project in Liaoning Province,China.The results indicate that the proposed rule can take full advantage of hydrologic compensation in basins and capacity compensation in reservoirs.Thus it can improve the utilization efficiency of water resources in system.
基金the Knowledge Innovation Project of Chinese Academy of Sciences (NO.KZCX2-YW-Q06-1-3)the Ministry of Science and Technology of China for"973"project(NO.2010CB428404)
文摘Water resource allocation (WRA) is a useful but complicated topic in water resource management. With the targets set out in the Plan of Newly Increasing Yield (NIY) of 10×1011 Jin (1 kg=2 Jin) from 2009 to 2020, the immediate question for the Songhua River Region (SHRR) is whether water is sufficient to support the required yield increase. Very few studies have considered to what degree this plan influences the solution of WRA and how to adapt. This paper used a multi-objective programming model for WRA across the Harbin region located in the SHRR in 2020 and 2030 (p=75%). The Harbin region can be classified into four types of sub-regions according to WRA: Type I is Harbin city zone. With rapid urbanization, Harbin city zone has the highest risk of agricultural water shortage. Considering the severe situation, there is little space for Harbin city zone to reach the NIY goal. Type II is sub-regions including Wuchang, Shangzhi and Binxian. There are some agricultural water shortage risks in this type region. Because the water shortage is relatively small, it is possible to increase agricultural production through strengthening agricultural water-saving countermeasures and constructing water conservation facilities. Type III is sub-regions including Acheng, Hulan, Mulan and Fangzheng. In this type region, there may be a water shortage if the rate of urbanization accelerates. According to local conditions, it is needed to enhance water-saving countermeasures to increase agricultural production to a certain degree. Type IV is sub-regions including Shuangcheng, Bayan, Yilan, Yanshou and Tonghe. There are good water conditions for the extensive development of agriculture. Nevertheless, in order to ensure an increase in agricultural production, it is necessary to enhance the way in which water is utilized and consider soil resources. These results will help decision makers make a scientific NIY plan for the Harbin region for sustainable utilization of regional water resources and an increase in agricultural production.