供热负荷预测是实现智慧供热的关键技术之一,对降低供热能耗具有重要意义。本文以开封市J集中供热系统某换热站的2020年供暖季历史供热数据为研究对象,设计了基于门控循环单元(gate recurrent unit, GRU)神经网络的短期供热负荷预测模...供热负荷预测是实现智慧供热的关键技术之一,对降低供热能耗具有重要意义。本文以开封市J集中供热系统某换热站的2020年供暖季历史供热数据为研究对象,设计了基于门控循环单元(gate recurrent unit, GRU)神经网络的短期供热负荷预测模型。将1次侧供回水温度、室外温度、风速、天气情况、流量作为输入变量,供热负荷作为输出变量,前70%的数据作为训练集,后30%的数据作为测试集。通过MALTAB进行仿真模拟,并与传统的BP神经网络、Elman神经网络进行对比分析。仿真结果显示GRU神经网络预测模型MAPE为3.94%,RMSE为76.77,预测效果最佳。展开更多
文摘供热负荷预测是实现智慧供热的关键技术之一,对降低供热能耗具有重要意义。本文以开封市J集中供热系统某换热站的2020年供暖季历史供热数据为研究对象,设计了基于门控循环单元(gate recurrent unit, GRU)神经网络的短期供热负荷预测模型。将1次侧供回水温度、室外温度、风速、天气情况、流量作为输入变量,供热负荷作为输出变量,前70%的数据作为训练集,后30%的数据作为测试集。通过MALTAB进行仿真模拟,并与传统的BP神经网络、Elman神经网络进行对比分析。仿真结果显示GRU神经网络预测模型MAPE为3.94%,RMSE为76.77,预测效果最佳。
文摘提出一种基于深度置信网络的区域供热逐时负荷预测方法,并以兰州新区某换热站实际运行数据对所提出方法的有效性进行验证。此外,为分析建筑物热惰性对供热逐时负荷预测精确度的影响,分别将预测时刻前1 h,1~2 h,和1~3 h时作为输入参数的时间序列。研究结果表明:当时间序列取为预测时刻前1 h时显示出最佳的预测性能,预测值与实际值的平均绝对误差和平均相对误差分别为277.98 k W和2.28%,且相比采用人工神经网络分别降低约17.56 k W和0.15%。