期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用Stack-Tree LSTM的汉语一体化依存分析模型
被引量:
2
1
作者
刘航
刘明童
+2 位作者
张玉洁
徐金安
陈钰枫
《中文信息学报》
CSCD
北大核心
2019年第1期10-17,共8页
在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存...
在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存子树的完整信息,而依存子树作为中间结果的主要成分对三个任务的后续分析具有重要的指导意义。该文在基于转移的依存分析框架下,提出Stack-Tree LSTM依存子树编码方法,通过对分析栈中所有依存子树的有效建模,获取任意时刻的依存子树的完整信息作为特征参与转移动作决策。利用该编码方式提出词性特征使用方法,融合N-gram特征构建汉语一体化依存分析神经网络模型。最后在宾州汉语树库上进行了验证实验,并与已有方法进行了比较。实验结果显示:该文提出的模型在分词、词性标注和依存分析任务上的性能非常接近特征工程最好的结果,并且均超过已有的一体化依存分析神经网络模型。
展开更多
关键词
中文分词、词性标注和
依存
分析
依存子树
神经网络
下载PDF
职称材料
基于多特征融合编码的神经网络依存句法分析模型
2
作者
刘明童
张玉洁
+1 位作者
徐金安
陈钰枫
《中文信息学报》
CSCD
北大核心
2018年第12期41-47,共7页
在基于神经网络的依存句法分析中,对分析栈和决策层信息的表示和利用依然有值得深入研究的空间。针对分析栈的表示,已有工作并没有对单棵依存子树独立编码的表示,导致无法利用各个依存子树的局部特征;也没有对生成的依存弧序列进行编码...
在基于神经网络的依存句法分析中,对分析栈和决策层信息的表示和利用依然有值得深入研究的空间。针对分析栈的表示,已有工作并没有对单棵依存子树独立编码的表示,导致无法利用各个依存子树的局部特征;也没有对生成的依存弧序列进行编码,导致无法利用依存弧的全局信息。针对决策层的表示,已有工作利用MLP预测转移动作,该结构无法利用历史决策动作的信息。对此,该文提出基于多特征融合编码的神经网络依存句法分析模型,基于依存子树和历史生成的依存弧表示分析栈,利用TreeLSTM网络编码依存子树信息,利用LSTM网络编码历史生成的依存弧序列,以更好地表示分析栈的局部信息和全局信息。进一步提出基于LSTM网络的结构预测转移动作序列,引入历史决策动作信息作为特征辅助当前决策。该文以汉语为具体研究对象,在CTB5汉语依存分析数据上验证所提出的多特征融合编码的神经网络模型。实验结果显示,汉语依存句法分析性能得到改进,在目前公布的基于转移的分析系统中取得最好成绩,在UAS和LAS评价指标上分别达到87.8%和86.8%的精度,表明所提出的对依存子树局部特征及历史依存弧信息和历史决策动作信息的编码方法,在改进依存分析模型性能方面的有效性。
展开更多
关键词
依存
句法分析
多特征融合编码
依存子树
TreeLSTM神经网络
下载PDF
职称材料
题名
采用Stack-Tree LSTM的汉语一体化依存分析模型
被引量:
2
1
作者
刘航
刘明童
张玉洁
徐金安
陈钰枫
机构
北京交通大学计算机与信息技术学院
出处
《中文信息学报》
CSCD
北大核心
2019年第1期10-17,共8页
基金
国家自然科学基金(61876198
61370130)
+2 种基金
中央高校基本科研业务费专项资金(2018YJS025
2015JBM033)
科学技术部国际科技合作计划(K11F100010)
文摘
在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在。目前无论基于特征工程的方法还是基于深度学习的方法尚无法充分利用分析过程中依存子树的完整信息,而依存子树作为中间结果的主要成分对三个任务的后续分析具有重要的指导意义。该文在基于转移的依存分析框架下,提出Stack-Tree LSTM依存子树编码方法,通过对分析栈中所有依存子树的有效建模,获取任意时刻的依存子树的完整信息作为特征参与转移动作决策。利用该编码方式提出词性特征使用方法,融合N-gram特征构建汉语一体化依存分析神经网络模型。最后在宾州汉语树库上进行了验证实验,并与已有方法进行了比较。实验结果显示:该文提出的模型在分词、词性标注和依存分析任务上的性能非常接近特征工程最好的结果,并且均超过已有的一体化依存分析神经网络模型。
关键词
中文分词、词性标注和
依存
分析
依存子树
神经网络
Keywords
Chinese word segmentation,POS tagging and dependency parsing
dependency subtree
neural network
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于多特征融合编码的神经网络依存句法分析模型
2
作者
刘明童
张玉洁
徐金安
陈钰枫
机构
北京交通大学计算机与信息技术学院
出处
《中文信息学报》
CSCD
北大核心
2018年第12期41-47,共7页
基金
中央高校基本科研业务费专项资金(2018YJS025
2015JBM033)
+3 种基金
国家自然科学基金(61370130
61473294)
国家自然科学基金(61876198)
科学技术部国际科技合作计划(K11F100010)
文摘
在基于神经网络的依存句法分析中,对分析栈和决策层信息的表示和利用依然有值得深入研究的空间。针对分析栈的表示,已有工作并没有对单棵依存子树独立编码的表示,导致无法利用各个依存子树的局部特征;也没有对生成的依存弧序列进行编码,导致无法利用依存弧的全局信息。针对决策层的表示,已有工作利用MLP预测转移动作,该结构无法利用历史决策动作的信息。对此,该文提出基于多特征融合编码的神经网络依存句法分析模型,基于依存子树和历史生成的依存弧表示分析栈,利用TreeLSTM网络编码依存子树信息,利用LSTM网络编码历史生成的依存弧序列,以更好地表示分析栈的局部信息和全局信息。进一步提出基于LSTM网络的结构预测转移动作序列,引入历史决策动作信息作为特征辅助当前决策。该文以汉语为具体研究对象,在CTB5汉语依存分析数据上验证所提出的多特征融合编码的神经网络模型。实验结果显示,汉语依存句法分析性能得到改进,在目前公布的基于转移的分析系统中取得最好成绩,在UAS和LAS评价指标上分别达到87.8%和86.8%的精度,表明所提出的对依存子树局部特征及历史依存弧信息和历史决策动作信息的编码方法,在改进依存分析模型性能方面的有效性。
关键词
依存
句法分析
多特征融合编码
依存子树
TreeLSTM神经网络
Keywords
dependency parsing
multi-feature encoding
dependency subtree
TreeLSTM neural network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用Stack-Tree LSTM的汉语一体化依存分析模型
刘航
刘明童
张玉洁
徐金安
陈钰枫
《中文信息学报》
CSCD
北大核心
2019
2
下载PDF
职称材料
2
基于多特征融合编码的神经网络依存句法分析模型
刘明童
张玉洁
徐金安
陈钰枫
《中文信息学报》
CSCD
北大核心
2018
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部