In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop metho...In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop method was employed. The sliding body was divided into strips in a three-dimensional model, and the lateral earth pressure was put into mechanical analysis and the three-dimensional stability analysis methods applicable for circular sliding in concave slope were deduced. Based on geometric structure and the geological parameters of a concave slope, the influence rule of curvature radius and the top and bottom arch height on the concave slope stability were analyzed. The results show that the stability coefficient decreases after growth, first in the transition stage of slope shape from flat to concave, and it has been confirmed that there is a best size to make the slope stability factor reach a maximum. By contrast with average slope, the stability of a concave slope features a smaller range of ascension with slope height increase, which indicates that the enhancing effect of a concave slope is apparent only with lower slope heights.展开更多
A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the li...A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.展开更多
基金financially supported by the China Postdoctoral Science Foundation(No.2015M580491)the National Natural Science Foundation of China(No.51404262)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140213)the National High Technology Research and Development Program of China(No.2012AA062004)
文摘In order to study the stability control mechanism of a concave slope with circular landslide, and remove the influence of differences in shape on slope stability, the limit analysis method of a simplified Bishop method was employed. The sliding body was divided into strips in a three-dimensional model, and the lateral earth pressure was put into mechanical analysis and the three-dimensional stability analysis methods applicable for circular sliding in concave slope were deduced. Based on geometric structure and the geological parameters of a concave slope, the influence rule of curvature radius and the top and bottom arch height on the concave slope stability were analyzed. The results show that the stability coefficient decreases after growth, first in the transition stage of slope shape from flat to concave, and it has been confirmed that there is a best size to make the slope stability factor reach a maximum. By contrast with average slope, the stability of a concave slope features a smaller range of ascension with slope height increase, which indicates that the enhancing effect of a concave slope is apparent only with lower slope heights.
文摘A two-dimensional (2D) finite element analysis was carried out to assess the time-dependent behavior of single vertical pile embedded in elasto-plastic soil. The finite element analyses were carried out using the linear elastic model for the structure of the pile, while the Mohr-Coulomb model was used for representing the soil behavior surrounding the pile. The study includes cohesionless and cohesive soil to assess the lateral response of pile in the two types of soil. The whole geoteehnical model is suitable for problem of piles to determine the design quantities such as lateral deformation, lateral soil stress and its variation with time. The model is verified based on the results of published cases and there is good comparison between the results of published ease and the present simulation model. It is found that, the pile in cohesionless soil has more resistance in the rapid loading and less one in the long term loading. On the other hand, the pile in cohesive soil shows opposite behavior.