为探究夹芯结构在水下舷侧防雷舱中应用的可行性,比较了不同结构形式防雷舱的变形吸能特性。设计了4种不同吸能结构形式的防雷舱,并分别开展了300 g TNT水下接触爆炸毁伤试验。通过对比分析防雷舱内部舱壁板的变形破坏情况发现:以液舱...为探究夹芯结构在水下舷侧防雷舱中应用的可行性,比较了不同结构形式防雷舱的变形吸能特性。设计了4种不同吸能结构形式的防雷舱,并分别开展了300 g TNT水下接触爆炸毁伤试验。通过对比分析防雷舱内部舱壁板的变形破坏情况发现:以液舱内壁柔性大变形进行吸能的结构形式,边界必须有强支撑结构,支撑不足时难以发挥薄膜拉伸吸能效果;利用液舱内壁-弧形板-吸能舱内壁整体变形吸能的吸能舱夹芯结构形式,弧形板在为液舱内壁提供有力支撑的同时还可随液舱内壁共同变形吸能,有效提高防雷舱的防护能力;进一步在弧形板间添加泡沫铝,未能取得更好的防护效果;弧形板前移至液舱的夹芯结构形式,弧形板的设置导致水中能量未能充分耗散至整个液舱,能量的汇聚致使内部舱室产生了更严重的破坏。展开更多
文摘为探究夹芯结构在水下舷侧防雷舱中应用的可行性,比较了不同结构形式防雷舱的变形吸能特性。设计了4种不同吸能结构形式的防雷舱,并分别开展了300 g TNT水下接触爆炸毁伤试验。通过对比分析防雷舱内部舱壁板的变形破坏情况发现:以液舱内壁柔性大变形进行吸能的结构形式,边界必须有强支撑结构,支撑不足时难以发挥薄膜拉伸吸能效果;利用液舱内壁-弧形板-吸能舱内壁整体变形吸能的吸能舱夹芯结构形式,弧形板在为液舱内壁提供有力支撑的同时还可随液舱内壁共同变形吸能,有效提高防雷舱的防护能力;进一步在弧形板间添加泡沫铝,未能取得更好的防护效果;弧形板前移至液舱的夹芯结构形式,弧形板的设置导致水中能量未能充分耗散至整个液舱,能量的汇聚致使内部舱室产生了更严重的破坏。