Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learn...Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).展开更多
Building attack scenario is one of the most important aspects in network security.This paper pro-posed a system which collects intrusion alerts,clusters them as sub-attacks using alerts abstraction,ag-gregates the sim...Building attack scenario is one of the most important aspects in network security.This paper pro-posed a system which collects intrusion alerts,clusters them as sub-attacks using alerts abstraction,ag-gregates the similar sub-attacks,and then correlates and generates correlation graphs.The scenarios wererepresented by alert classes instead of alerts themselves so as to reduce the required rules and have the a-bility of detecting new variations of attacks.The proposed system is capable of passing some of the missedattacks.To evaluate system effectiveness,it was tested with different datasets which contain multi-stepattacks.Compressed and easily understandable Correlation graphs which reflect attack scenarios were gen-erated.The proposed system can correlate related alerts,uncover the attack strategies,and detect newvariations of attacks.展开更多
This paper presents a new method based on a second-order stochastic model for computer intrusion detection.The results show that the performance of the second-order stochastic model is better than that of a first-orde...This paper presents a new method based on a second-order stochastic model for computer intrusion detection.The results show that the performance of the second-order stochastic model is better than that of a first-order stochastic model.In this study,different window sizes are also used to test the performance of the model.The detection results show that the second-order stochastic model is not so sensitive to the window size,comparing with the first-order stochastic model and other previous researches.The detection result of window sizes 6 and 10 is the same.展开更多
Currently, most anomaly detection pattern learning algorithms require a set of purely normal data from which they train their model. If the data contain some intrusions buried within the training data, the algorithm m...Currently, most anomaly detection pattern learning algorithms require a set of purely normal data from which they train their model. If the data contain some intrusions buried within the training data, the algorithm may not detect these attacks because it will assume that they are normal. In reality, it is very hard to guarantee that there are no attack items in the collected training data. Focusing on this problem, in this paper, firstly a new anomaly detection measurement is proposed according to the probability characteristics of intrusion instances and normal instances. Secondly, on the basis of anomaly detection measure, we present a clustering-based unsupervised anomaly detection patterns learning algorithm, which can overcome the shortage above. Finally, some experiments are conducted to verify the proposed algorithm is valid.展开更多
The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The ...The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.展开更多
文摘Recently machine learning-based intrusion detection approaches have been subjected to extensive researches because they can detect both misuse and anomaly. In this paper, rough set classification (RSC), a modern learning algorithm, is used to rank the features extracted for detecting intrusions and generate intrusion detection models. Feature ranking is a very critical step when building the model. RSC performs feature ranking before generating rules, and converts the feature ranking to minimal hitting set problem addressed by using genetic algorithm (GA). This is done in classical approaches using Support Vector Machine (SVM) by executing many iterations, each of which removes one useless feature. Compared with those methods, our method can avoid many iterations. In addition, a hybrid genetic algorithm is proposed to increase the convergence speed and decrease the training time of RSC. The models generated by RSC take the form of'IF-THEN' rules, which have the advantage of explication. Tests and comparison of RSC with SVM on DARPA benchmark data showed that for Probe and DoS attacks both RSC and SVM yielded highly accurate results (greater than 99% accuracy on testing set).
基金the National High Technology Research and Development Programme of China(2006AA01Z452)
文摘Building attack scenario is one of the most important aspects in network security.This paper pro-posed a system which collects intrusion alerts,clusters them as sub-attacks using alerts abstraction,ag-gregates the similar sub-attacks,and then correlates and generates correlation graphs.The scenarios wererepresented by alert classes instead of alerts themselves so as to reduce the required rules and have the a-bility of detecting new variations of attacks.The proposed system is capable of passing some of the missedattacks.To evaluate system effectiveness,it was tested with different datasets which contain multi-stepattacks.Compressed and easily understandable Correlation graphs which reflect attack scenarios were gen-erated.The proposed system can correlate related alerts,uncover the attack strategies,and detect newvariations of attacks.
基金Supported by the National Natural Science Foundation of China (No.60473030).
文摘This paper presents a new method based on a second-order stochastic model for computer intrusion detection.The results show that the performance of the second-order stochastic model is better than that of a first-order stochastic model.In this study,different window sizes are also used to test the performance of the model.The detection results show that the second-order stochastic model is not so sensitive to the window size,comparing with the first-order stochastic model and other previous researches.The detection result of window sizes 6 and 10 is the same.
文摘Currently, most anomaly detection pattern learning algorithms require a set of purely normal data from which they train their model. If the data contain some intrusions buried within the training data, the algorithm may not detect these attacks because it will assume that they are normal. In reality, it is very hard to guarantee that there are no attack items in the collected training data. Focusing on this problem, in this paper, firstly a new anomaly detection measurement is proposed according to the probability characteristics of intrusion instances and normal instances. Secondly, on the basis of anomaly detection measure, we present a clustering-based unsupervised anomaly detection patterns learning algorithm, which can overcome the shortage above. Finally, some experiments are conducted to verify the proposed algorithm is valid.
文摘The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.