Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
The article reviews the scientific approaches to monitoring of soil condition on the soil protection agrolandscape. In 1980s, the contour-meliorative soil protection system was established on the selected fields in Uk...The article reviews the scientific approaches to monitoring of soil condition on the soil protection agrolandscape. In 1980s, the contour-meliorative soil protection system was established on the selected fields in Ukraine. The objective of the current research was to determine the capabilities of satellite survey to identify the changes of soil cover that had occurred on these fields during the past 25 years. Soil erosion processes are very dynamic, therefore it is essential to use time-series of operative satellite images to track those changes. Rills on the fields, caused by water erosion, are clearly identified on high-resolution satellite data. Erosion causes the decrease of humus content, which affects soil reflection values. This in turn leads to a corresponding change of color shade on satellite images. The research allowed to determine correlation between remote sensing data and soil organic carbon content and to acquire a mathematical model which describes this correlation. The condition of the agrolandscape soils was assessed using the regression model, which helped to evaluate erosion risk for different areas of the test polygon. The visual interpretation of satellite imagery led to a conclusion about a damaging effect of erosion on protective forest belts and accordingly on fields' soil cover and crops. Visual analysis results were approved by field research. Photos taken during the field research indicate an unsatisfactory status of forest belts and a devastating effect of eroding water flows. These are the results of irresponsible land use and constant violation of methodical principles of the contour-meliorative system organization. The article concludes that the use of time-series of high-resolution satellite imagery allows monitoring the condition of soil protection agrolandscape, in particular the forest belts' status soil cover conditions and their change over time. The research results can be used as an informational basis for the soil protection agrolandscape monitoring system.展开更多
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
文摘The article reviews the scientific approaches to monitoring of soil condition on the soil protection agrolandscape. In 1980s, the contour-meliorative soil protection system was established on the selected fields in Ukraine. The objective of the current research was to determine the capabilities of satellite survey to identify the changes of soil cover that had occurred on these fields during the past 25 years. Soil erosion processes are very dynamic, therefore it is essential to use time-series of operative satellite images to track those changes. Rills on the fields, caused by water erosion, are clearly identified on high-resolution satellite data. Erosion causes the decrease of humus content, which affects soil reflection values. This in turn leads to a corresponding change of color shade on satellite images. The research allowed to determine correlation between remote sensing data and soil organic carbon content and to acquire a mathematical model which describes this correlation. The condition of the agrolandscape soils was assessed using the regression model, which helped to evaluate erosion risk for different areas of the test polygon. The visual interpretation of satellite imagery led to a conclusion about a damaging effect of erosion on protective forest belts and accordingly on fields' soil cover and crops. Visual analysis results were approved by field research. Photos taken during the field research indicate an unsatisfactory status of forest belts and a devastating effect of eroding water flows. These are the results of irresponsible land use and constant violation of methodical principles of the contour-meliorative system organization. The article concludes that the use of time-series of high-resolution satellite imagery allows monitoring the condition of soil protection agrolandscape, in particular the forest belts' status soil cover conditions and their change over time. The research results can be used as an informational basis for the soil protection agrolandscape monitoring system.