Soil erosion on sloping field has led to a lot of environmental prob lems. In order to reveal the seriousness of the damage of soil erosion on slopin g fields 137Cs tracer method was used to estimate soil erosion rate...Soil erosion on sloping field has led to a lot of environmental prob lems. In order to reveal the seriousness of the damage of soil erosion on slopin g fields 137Cs tracer method was used to estimate soil erosion rate. 137Cs refer ence inventory of 2200Bq/m2 in Yixing, southern Jiangsu Province, was estimated and a model for estimating erosion of cultivated soil was established in order t o avoid overestimating soil erosion rates. Then based on the soil erosion rates and measured soil physical and chemical properties, direct and indirect impacts of soil erosion on environment were further discussed. Direct impacts of erosion on environment included on-site and off-site impacts. The on-site impacts we re that soil layer became thin, soil structure was deteriorated and soil nutrien ts decreased. The off-site impacts were that water bodies were polluted. The in direct impacts of soil erosion on environment were the increase of fertilizer ap plication and energy consumption, and change of adaptability of land uses. Altho ugh erosion intensity was not serious in the study area, its environmental impac ts should not be ignored because of great soil nutrient loss and coarseness of s oil particles.展开更多
Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil...Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0mm, slightly higher than the lO mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to manyother factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (Lo), rainfall intensity during the maximum 20 minutes (I2o), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I4o), and rainfall intensity during the maximum 6o minutes (I60). Among these factors, they are of the highest relativity with I6o. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), L10, 120, I30, 140, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2.a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2.a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2-a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.展开更多
This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures(aboveground vegetation cover, surface litter layer and underground roots), plant diversity, ...This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures(aboveground vegetation cover, surface litter layer and underground roots), plant diversity, vegetation patterns and their scale characteristics. Quantitative relationships between vegetation factors with runoff and soil loss are described. A framework for describing relationships involving vegetation, erosion and scale is proposed. The relative importance of each vegetation dimension for various erosion processes changes across scales. With the development of erosion features(i.e., splash, interrill, rill and gully), the main factor of vertical vegetation structures in controlling runoff and soil loss changes from aboveground biomass to roots. Plant diversity levels are correlated with vertical vegetation structures and play a key role at small scales, while vegetation patterns also maintain a critical function across scales(i.e., patch, slope, catchment and basin/region). Several topics for future study are proposed in this review, such as to determine efficient vegetation architectures for ecological restoration, to consider the dynamics of vegetation patterns, and to identify the interactions involving the three dimensions of vegetation.展开更多
Soil erosion has become a major global environmental problem and is particularly acute on the Loess Plateau(LP), China. It is therefore highly important to control this process in order to improve ecosystems, protect ...Soil erosion has become a major global environmental problem and is particularly acute on the Loess Plateau(LP), China. It is therefore highly important to control this process in order to improve ecosystems, protect ecological security, and maintain the harmonious relationship between humans and nature. We compared the effects of rainfall and land use(LU) patterns on soil erosion in different LP watersheds in this study in order to augment and improve soil erosion models. As most research on this theme has so far been focused on individual study areas, limited analyses of rainfall and LU patterns on soil erosion within different-scale watersheds has so far been performed, a discrepancy which might influence the simulation accuracies of soil erosion models. We therefore developed rainfall and LU pattern indices in this study using the soil erosion evaluation index as a reference and applied them to predict the extent of this process in different-scale watersheds, an approach which is likely to play a crucial role in enabling the comprehensive management of this phenomenon as well as the optimized design of LU patterns. The areas considered in this study included the Qingjian, Fenchuan, Yanhe, and Dali river watersheds. Results showed that the rainfall erosivity factor(R) tended to increase in these areas from 2006 to 2012, while the vegetation cover and management factor(C) tended to decrease. Results showed that as watershed area increased, the effect of rainfall pattern on soil erosion gradually decreased while patterns in LU trended in the opposite direction, as the relative proportion of woodland decreased and the different forms of steep slope vegetation cover became more homogenous. As watershed area increased, loose soil and craggy terrain properties led to additional gravitational erosion and enhanced the effects of both soil and topography.展开更多
文摘Soil erosion on sloping field has led to a lot of environmental prob lems. In order to reveal the seriousness of the damage of soil erosion on slopin g fields 137Cs tracer method was used to estimate soil erosion rate. 137Cs refer ence inventory of 2200Bq/m2 in Yixing, southern Jiangsu Province, was estimated and a model for estimating erosion of cultivated soil was established in order t o avoid overestimating soil erosion rates. Then based on the soil erosion rates and measured soil physical and chemical properties, direct and indirect impacts of soil erosion on environment were further discussed. Direct impacts of erosion on environment included on-site and off-site impacts. The on-site impacts we re that soil layer became thin, soil structure was deteriorated and soil nutrien ts decreased. The off-site impacts were that water bodies were polluted. The in direct impacts of soil erosion on environment were the increase of fertilizer ap plication and energy consumption, and change of adaptability of land uses. Altho ugh erosion intensity was not serious in the study area, its environmental impac ts should not be ignored because of great soil nutrient loss and coarseness of s oil particles.
基金funded by the National Natural Science Foundation of China (No. 40661010)
文摘Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and "rainfall-erosion" data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0mm, slightly higher than the lO mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to manyother factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (Lo), rainfall intensity during the maximum 20 minutes (I2o), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I4o), and rainfall intensity during the maximum 6o minutes (I60). Among these factors, they are of the highest relativity with I6o. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), L10, 120, I30, 140, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2.a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2.a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2-a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.
基金National Natural Science Foundation of China,No.41390464National Key Research and Development Program,No.2016YFC0501602Youth Innovation Promotion Association CAS,No.2016040
文摘This review summarizes the effects of vegetation on runoff and soil loss in three dimensions: vertical vegetation structures(aboveground vegetation cover, surface litter layer and underground roots), plant diversity, vegetation patterns and their scale characteristics. Quantitative relationships between vegetation factors with runoff and soil loss are described. A framework for describing relationships involving vegetation, erosion and scale is proposed. The relative importance of each vegetation dimension for various erosion processes changes across scales. With the development of erosion features(i.e., splash, interrill, rill and gully), the main factor of vertical vegetation structures in controlling runoff and soil loss changes from aboveground biomass to roots. Plant diversity levels are correlated with vertical vegetation structures and play a key role at small scales, while vegetation patterns also maintain a critical function across scales(i.e., patch, slope, catchment and basin/region). Several topics for future study are proposed in this review, such as to determine efficient vegetation architectures for ecological restoration, to consider the dynamics of vegetation patterns, and to identify the interactions involving the three dimensions of vegetation.
基金National Natural Science Foundation of China,No.41771207,No.41171069
文摘Soil erosion has become a major global environmental problem and is particularly acute on the Loess Plateau(LP), China. It is therefore highly important to control this process in order to improve ecosystems, protect ecological security, and maintain the harmonious relationship between humans and nature. We compared the effects of rainfall and land use(LU) patterns on soil erosion in different LP watersheds in this study in order to augment and improve soil erosion models. As most research on this theme has so far been focused on individual study areas, limited analyses of rainfall and LU patterns on soil erosion within different-scale watersheds has so far been performed, a discrepancy which might influence the simulation accuracies of soil erosion models. We therefore developed rainfall and LU pattern indices in this study using the soil erosion evaluation index as a reference and applied them to predict the extent of this process in different-scale watersheds, an approach which is likely to play a crucial role in enabling the comprehensive management of this phenomenon as well as the optimized design of LU patterns. The areas considered in this study included the Qingjian, Fenchuan, Yanhe, and Dali river watersheds. Results showed that the rainfall erosivity factor(R) tended to increase in these areas from 2006 to 2012, while the vegetation cover and management factor(C) tended to decrease. Results showed that as watershed area increased, the effect of rainfall pattern on soil erosion gradually decreased while patterns in LU trended in the opposite direction, as the relative proportion of woodland decreased and the different forms of steep slope vegetation cover became more homogenous. As watershed area increased, loose soil and craggy terrain properties led to additional gravitational erosion and enhanced the effects of both soil and topography.