The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quanti...The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quantified using a rainfall simulator and Guelph permeameter in a hilly area of subtropical China. A negative correlation existed between Kfs of the topsoil (0-5 cm) and K. The empirical expression K ≈ α × Kfs^-b+c, where a, b and c are the structural coefficients related to soil properties, such as soil type, soil parent material, organic matter, pH and mechanical composition, best described the relationship between soil saturated permeability and soil erodibility.展开更多
基金Project supported by the National Natural Sciences Foundation of China (No. 40471081)the National Key Basic Research Support Foundation (No. G1999011810)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-422)
文摘The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quantified using a rainfall simulator and Guelph permeameter in a hilly area of subtropical China. A negative correlation existed between Kfs of the topsoil (0-5 cm) and K. The empirical expression K ≈ α × Kfs^-b+c, where a, b and c are the structural coefficients related to soil properties, such as soil type, soil parent material, organic matter, pH and mechanical composition, best described the relationship between soil saturated permeability and soil erodibility.