The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition o...The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County展开更多
Reservoir sedimentation dynamics were interpreted using Cs-137 activity, particle size and rainfall erosivity analysis in conjunetion with sediment profile coring. Two sediment cores were retrieved from the Changshou ...Reservoir sedimentation dynamics were interpreted using Cs-137 activity, particle size and rainfall erosivity analysis in conjunetion with sediment profile coring. Two sediment cores were retrieved from the Changshou reservoir of Chongqing, which was dammed in 1956 at the outlet of Longxi catchment in the Three Gorges Area using a gravity corer equipped with an aerylie tube with an inner diameter of 6 em. The extracted cores were sectioned at 2 cm intervals. All sediment core samples were dried, sieved (〈2 mm) and weighed. 137Cs activity was measured by y-ray spectrometry. The particle size of the core samples was measured using laser particle size granulometry. Rainfall erosivity was calculated using daily rainfall data from meteorological records and information on soil conservation history was collated to help interpret temporal sedimentation trends. The peak fallout of 137Cs in 1963 appeared at a depth of 84 cm in core A and 56 cm in core B. The peaks of sand contents were related to the peaks of rainfall erosivity which were recorded in 1982, 1989, 1998 and 2005, respectively. Sedimentation rates were calculated according to the sediment profile chronological controls of 1956, 1963, 1982, 1989, 1998 and 2oo5. The highest sedimentation rate was around 2.0 cm·a^-1 between 1982 and 1988 when the Chinese national reform and the Household Responsibility System were implemented, leading to accelerated soil erosion in the Longxi catchment. Since 1990s, and particularly since 2005, sedimentation rates clearly decreased, since a number of soil conservation programs have been carried out in the catchment. The combined use of ^137Cs chronology, particle size and rainfall erosivity provided a simple basis for reconstructing reservoir sedimentation dynamics in the context of both physical processes and soil restoration. Its advantages include avoiding the need for full blown sediment yield reconstruction and the concomitant consideration of core correlation and corrections for autochthonous inputs and reservoir trap efficiency.展开更多
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentat...Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.展开更多
This paper reports the concentrations of 137Cs, hexaehlorocyclohexane (HCH), dichlorodiphenyltrichloroethanes (DDT) and its main degradation products, δ3C, and organic carbon in pond sediments (O-210 cm, section...This paper reports the concentrations of 137Cs, hexaehlorocyclohexane (HCH), dichlorodiphenyltrichloroethanes (DDT) and its main degradation products, δ3C, and organic carbon in pond sediments (O-210 cm, sectioned by 2-20 cm interval) and surface soils (the 0-3 cm horizon) collected in 2OlO from Chenjia catchment, which is located in Yanting county in the hilly central Sichuan of China. α-, β-, and γ-HCH, DDT, and DDD were not detected throughout the sediment profile. Trace concentrations of δ-HCH (0.89-29.31 ng g^-1) and p,p'- DDE (1.85-6.02 ng g^-1) were detected only in top 40 cm sediment. The 137Cs fallout peak in 1963 (corresponding to the 55-60 cm depth), the sedimentary signature left by the last year of HCH use in 1989 (an additional indicator at 20-25 cm), and the obvious original channel bed prior to the construction of the pond in 1956 were used as temporal markers to estimate changes in average sedimentation rate between different periods due to changes in land use. Continuous, marked decrease in average sedimentation rate (i.e., 3.79, 1.35 and 1.07 cm year-1 in 1956-1963, 1963-1989, and 1989-2010, respectively) over time was observed, probably due to the reforestation, abandoning of steep sloping farmland for afforestation and natural re-vegetation (implementation of the Grain for Green Program), and the conversion of part of gently sloping farmlandterraces to orchard land since the 1980s, especially since the 1990s. This was corroborated by the observed decrease (more negative) in δ3C of sediment towards the surface, which indicates increased relative contribution of eroded soil particles coming from slopes with increased tree cover in sediment source area. Combined use of 137Cs, δ-HCH, and δ3C record in sediments has been demonstrated to be a powerful approach to reconstruction of response in sedimentation rate to historical land use changes.展开更多
A distributed hillslope model is presented for the computation of seasonal sediment loads flowing into the rain-fed irrigation reservoirs (tanks) from the mountainous catchments in Sri Lanka. The model is based on the...A distributed hillslope model is presented for the computation of seasonal sediment loads flowing into the rain-fed irrigation reservoirs (tanks) from the mountainous catchments in Sri Lanka. The model is based on the subdivision of the catchment into hillslopes and application of a sediment transport capacity equation at hillslope scale and computation of sediment loads transported to the tanks. Coarse and fine sediment loads due to hourly excess rainfall during a season are separately estimated. The model depends on fewer parameters and can be easily calibrated for a tank. The model calibration only requires measurements of coarse and fine sediment loads transported into the tank due to several rainfalls of different intensities from a representative subcatchment of the tank. Coarse sediment loads are measured by using a sediment trap installed across an ephemeral stream draining the subcatchment. Fine sediment loads are obtained by measuring the discharge and accompanied sediment concentrations over the sediment trap. The model is calibrated, verified and applied for an irrigation tank in Sri Lanka to estimate the seasonal sedimentation loads.展开更多
The research works were carried out for determination of the washout, types, sorts and level of the development reasons of degradation with the purpose of preparation of the measures of fight against degradation in th...The research works were carried out for determination of the washout, types, sorts and level of the development reasons of degradation with the purpose of preparation of the measures of fight against degradation in the soils in 2005-2009 in the lowland of Kur-Araz. The investigations were fulfilled by using of geographical and stasionar methods. It is revealed that 333.6 thous, ha of the soils of the lowland of Kur-Araz have been exposed to erosion. 97.4 thousand ha of them have been exposed to rainstorm erosion, 127.1 thous, have been exposed to irrigative and 122.1 thous, ha to wind erosion. The most dangerous of them are considered irrigative erosion. Under the influence of erosion process in deposited over the length of furrow, deposits the changes happened in maintenance of humus and nutritions elements. In dependence on slope and water expenditure on 1 ha 2.23-14.86 t of soil are leached. As a result of out wash from 1 ha of soil 55.88-304.59 kg of humus, 4.06-20.80 kg of nitrogen, 4.57-26.55 of phosphorus and 57.40-372.99 of potassium are lost. The soil is exposed to degradation and as a result a process of desertification begins. On the basis of the quantitative an intensity of soil outwash the possible losses of dry matter including humus and main elements of nutrition of plants as a result of erosion, their deposit with the water way, are calculated, too.展开更多
Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The trig...Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.展开更多
Sediment-associated processes, such as sediment erosion, deposition, and pore water diffusion/advection affect sorptive contaminant transport. By considering these processes, we developed an equation to simulate conta...Sediment-associated processes, such as sediment erosion, deposition, and pore water diffusion/advection affect sorptive contaminant transport. By considering these processes, we developed an equation to simulate contaminant transport. Erosion and deposition processes are considered as erosion and deposition fluxes of sediment, and adsorption-desorption processes of contaminants by sediment are simulated using the Langmuir Equation. Pore water diffusion is calculated based on the contaminant concentration gradient across the sediment-water interface. Pore water advection is estimated using pore water contained in the sediments of erosion flux. The equation is validated to simulate total phosphorus concentrations in Guanhe estuary in the northern Jiangsu, China. The simulated total phosphorus concentrations show better agreement with field observations compared to estimations that do consider sediment-associated processes.展开更多
Protective structures, built in the 1980's in order to reduce or stop coastal erosion in Rufisque, involved a modification of the coastal morpho-sedimentary landscape and have intensified the coastal dynamics. The di...Protective structures, built in the 1980's in order to reduce or stop coastal erosion in Rufisque, involved a modification of the coastal morpho-sedimentary landscape and have intensified the coastal dynamics. The diachronic study of beach profiles, before and after the seawalls construction showed that these protective structures accentuated the coastal erosion, with more important sedimentary deficits at the ends of the structures. Today, the Rufisque coast is characterized by a set of sedimentary cells whose morphological evolution and annual sedimentary dynamics are controlled by seasonal forcing: sedimentary deposits in dry season and erosion in wet season. However, this alternation of deposits and erosion phase shows spatiotemporal disparities. These disparities are very marked between a northwestern area characterized by concave profiles and a southeastern area (the bay of Rufisque) characterized by convex profiles and a much more important sedimentary deficit. The results also showed that these methods of shoreline protection are not durable measurements (degradation of the structures) and have exacerbated the vulnerability to coastal erosion as well as those of the coastal populations.展开更多
基金Under the auspices of Special Major Science and Technology Projects in Xinjiang Uygur Autonomous Region(No.201130106-1)Public Sector(Meteorology)Research Project(No.GYHY201106025)Doctoral Station Supporting Foundation for Geography of Xinjiang Normal University and Open Project of Xinjiang Lake Environment and Resources Key Laboratory of Arid Zone(No.XJDX0909-2013-08)
文摘The oasis-desert ecotone is a fragile ecological zone that is affected both by oasis and desert conditions. To understand the impact of the differences in wind power, and the influence of wind erosion and deposition on the ecotone, meteorological data and con- temporaneous wind erosion and deposition data were collected on the southern margin of Tarim Basin with serious sand-blown hazards. The wind velocity, average wind velocity, sand drift potential (DP), resultant sand drift potential (RDP), and sand transportation rate decrease significantly and successively across four landscape types with increasing vegetation coverage (VC). Flat surfaces and areas of shifting sandy ground experience intense wind erosion with fast movement of mobile sand dunes; semi-fixed sand areas experience ex- tensive wind deposition but only slight wind erosion; and fixed sand areas experience only slight wind erosion and deposition. Volume of wind erosion on bare newly reclaimed farmland is up to 6.96 times that of bare shifting sandy ground. Wind erosion volume per unit area and VC follow an exponential function relationship in natural conditions, while wind deposition volume per unit area does not conform to any functions which has close relationship with vary topography and arrangement patterns of vegetation besides for VC. The results indicate that the volume of wind erosion has a close correlation with VC, and different types and distribution patterns of topog- raphy and vegetation also profoundly influence the wind deposition volume in the field, and underground water tables in different land- scape types control the plant community distribution. Keywords: wind erosion; wind deposition; oasis-desert ecotone; vegetation coverage (VC); topography; Cele County
基金funded by the Chinese Academy of Sciences(Grant No.KZCX2-XB3-09)the Ministry of Science and Technology of China(Grant No.2011BAD31B03)the National Natural Science Foundation of China(Grant Nos.41101259,41102224 and 41201275)
文摘Reservoir sedimentation dynamics were interpreted using Cs-137 activity, particle size and rainfall erosivity analysis in conjunetion with sediment profile coring. Two sediment cores were retrieved from the Changshou reservoir of Chongqing, which was dammed in 1956 at the outlet of Longxi catchment in the Three Gorges Area using a gravity corer equipped with an aerylie tube with an inner diameter of 6 em. The extracted cores were sectioned at 2 cm intervals. All sediment core samples were dried, sieved (〈2 mm) and weighed. 137Cs activity was measured by y-ray spectrometry. The particle size of the core samples was measured using laser particle size granulometry. Rainfall erosivity was calculated using daily rainfall data from meteorological records and information on soil conservation history was collated to help interpret temporal sedimentation trends. The peak fallout of 137Cs in 1963 appeared at a depth of 84 cm in core A and 56 cm in core B. The peaks of sand contents were related to the peaks of rainfall erosivity which were recorded in 1982, 1989, 1998 and 2005, respectively. Sedimentation rates were calculated according to the sediment profile chronological controls of 1956, 1963, 1982, 1989, 1998 and 2oo5. The highest sedimentation rate was around 2.0 cm·a^-1 between 1982 and 1988 when the Chinese national reform and the Household Responsibility System were implemented, leading to accelerated soil erosion in the Longxi catchment. Since 1990s, and particularly since 2005, sedimentation rates clearly decreased, since a number of soil conservation programs have been carried out in the catchment. The combined use of ^137Cs chronology, particle size and rainfall erosivity provided a simple basis for reconstructing reservoir sedimentation dynamics in the context of both physical processes and soil restoration. Its advantages include avoiding the need for full blown sediment yield reconstruction and the concomitant consideration of core correlation and corrections for autochthonous inputs and reservoir trap efficiency.
基金supported by the National Basic Research Program of China (973 Program)(Grant No.2011CB409902)the Knowledge Innovation Project of the Chinese Academy of Sciences (No.KZCX2-YW-302)
文摘Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology of China (Grant No. 2011BAC09B05)the National Natural Science Foundation of China (Grant No. 41171372)+2 种基金International Atomic Energy Agency (15521/RO)the Hundred Talents Program of the Chinese Academy of Sciences and Sichuan Provincethe CAS-SAFEA International Partnership Program for Creative Research Team (Grant No. KZZD-EWTZ-06)
文摘This paper reports the concentrations of 137Cs, hexaehlorocyclohexane (HCH), dichlorodiphenyltrichloroethanes (DDT) and its main degradation products, δ3C, and organic carbon in pond sediments (O-210 cm, sectioned by 2-20 cm interval) and surface soils (the 0-3 cm horizon) collected in 2OlO from Chenjia catchment, which is located in Yanting county in the hilly central Sichuan of China. α-, β-, and γ-HCH, DDT, and DDD were not detected throughout the sediment profile. Trace concentrations of δ-HCH (0.89-29.31 ng g^-1) and p,p'- DDE (1.85-6.02 ng g^-1) were detected only in top 40 cm sediment. The 137Cs fallout peak in 1963 (corresponding to the 55-60 cm depth), the sedimentary signature left by the last year of HCH use in 1989 (an additional indicator at 20-25 cm), and the obvious original channel bed prior to the construction of the pond in 1956 were used as temporal markers to estimate changes in average sedimentation rate between different periods due to changes in land use. Continuous, marked decrease in average sedimentation rate (i.e., 3.79, 1.35 and 1.07 cm year-1 in 1956-1963, 1963-1989, and 1989-2010, respectively) over time was observed, probably due to the reforestation, abandoning of steep sloping farmland for afforestation and natural re-vegetation (implementation of the Grain for Green Program), and the conversion of part of gently sloping farmlandterraces to orchard land since the 1980s, especially since the 1990s. This was corroborated by the observed decrease (more negative) in δ3C of sediment towards the surface, which indicates increased relative contribution of eroded soil particles coming from slopes with increased tree cover in sediment source area. Combined use of 137Cs, δ-HCH, and δ3C record in sediments has been demonstrated to be a powerful approach to reconstruction of response in sedimentation rate to historical land use changes.
文摘A distributed hillslope model is presented for the computation of seasonal sediment loads flowing into the rain-fed irrigation reservoirs (tanks) from the mountainous catchments in Sri Lanka. The model is based on the subdivision of the catchment into hillslopes and application of a sediment transport capacity equation at hillslope scale and computation of sediment loads transported to the tanks. Coarse and fine sediment loads due to hourly excess rainfall during a season are separately estimated. The model depends on fewer parameters and can be easily calibrated for a tank. The model calibration only requires measurements of coarse and fine sediment loads transported into the tank due to several rainfalls of different intensities from a representative subcatchment of the tank. Coarse sediment loads are measured by using a sediment trap installed across an ephemeral stream draining the subcatchment. Fine sediment loads are obtained by measuring the discharge and accompanied sediment concentrations over the sediment trap. The model is calibrated, verified and applied for an irrigation tank in Sri Lanka to estimate the seasonal sedimentation loads.
文摘The research works were carried out for determination of the washout, types, sorts and level of the development reasons of degradation with the purpose of preparation of the measures of fight against degradation in the soils in 2005-2009 in the lowland of Kur-Araz. The investigations were fulfilled by using of geographical and stasionar methods. It is revealed that 333.6 thous, ha of the soils of the lowland of Kur-Araz have been exposed to erosion. 97.4 thousand ha of them have been exposed to rainstorm erosion, 127.1 thous, have been exposed to irrigative and 122.1 thous, ha to wind erosion. The most dangerous of them are considered irrigative erosion. Under the influence of erosion process in deposited over the length of furrow, deposits the changes happened in maintenance of humus and nutritions elements. In dependence on slope and water expenditure on 1 ha 2.23-14.86 t of soil are leached. As a result of out wash from 1 ha of soil 55.88-304.59 kg of humus, 4.06-20.80 kg of nitrogen, 4.57-26.55 of phosphorus and 57.40-372.99 of potassium are lost. The soil is exposed to degradation and as a result a process of desertification begins. On the basis of the quantitative an intensity of soil outwash the possible losses of dry matter including humus and main elements of nutrition of plants as a result of erosion, their deposit with the water way, are calculated, too.
文摘Unsaturated shallow soil deposits may be affected by either superficial soil erosion or shallow landslides in adjacent or overlapping source areas and in different seasons when a different soil suction exists.The triggering analysis of both these processes is a relevant issue for the hazard analysis while the literature mostly provides specific approaches for erosion or for landslides.The paper proposes a largearea analysis for a case study of Southern Italy,consisting of unsaturated shallow deposits of loose pyroclastic(air-fall) volcanic soils that have been repeatedly affected by erosion and landslides in special seasons.For a past catastrophic event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5cm are comparable with the in-situ evidences, if the analysis takes into account high rainfall intensity and a spatially variable soil cover use.More in general, the results of the paper are consistent with the previous literature and also provide a methodological contribution about the application of distinct tools over large area.The added value is that the paper shows how the combination of distinct large-area analyses may help with understanding the dominant slope instability mechanisms.Only once this goal is fully achieved, can specific physically-based analyses be confidently performed at detailed scales and for smaller specific areas.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200802940014)
文摘Sediment-associated processes, such as sediment erosion, deposition, and pore water diffusion/advection affect sorptive contaminant transport. By considering these processes, we developed an equation to simulate contaminant transport. Erosion and deposition processes are considered as erosion and deposition fluxes of sediment, and adsorption-desorption processes of contaminants by sediment are simulated using the Langmuir Equation. Pore water diffusion is calculated based on the contaminant concentration gradient across the sediment-water interface. Pore water advection is estimated using pore water contained in the sediments of erosion flux. The equation is validated to simulate total phosphorus concentrations in Guanhe estuary in the northern Jiangsu, China. The simulated total phosphorus concentrations show better agreement with field observations compared to estimations that do consider sediment-associated processes.
文摘Protective structures, built in the 1980's in order to reduce or stop coastal erosion in Rufisque, involved a modification of the coastal morpho-sedimentary landscape and have intensified the coastal dynamics. The diachronic study of beach profiles, before and after the seawalls construction showed that these protective structures accentuated the coastal erosion, with more important sedimentary deficits at the ends of the structures. Today, the Rufisque coast is characterized by a set of sedimentary cells whose morphological evolution and annual sedimentary dynamics are controlled by seasonal forcing: sedimentary deposits in dry season and erosion in wet season. However, this alternation of deposits and erosion phase shows spatiotemporal disparities. These disparities are very marked between a northwestern area characterized by concave profiles and a southeastern area (the bay of Rufisque) characterized by convex profiles and a much more important sedimentary deficit. The results also showed that these methods of shoreline protection are not durable measurements (degradation of the structures) and have exacerbated the vulnerability to coastal erosion as well as those of the coastal populations.