A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine me...A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine measuring applications and one kind of contact type measuring probes was designed for miniaturized or microfactory system. It ideally should be of small size and able to measure surface topography in nanometer scale. A commercial capacitive displacement sensor was proposed. It was a new concept in nano probe systems which can measure the displacement of shaft driven by the variation of surface topography. The nano probe mainly consisted of three parts: a capacitive displacement sensor, a porous type air slide and a contact probe part with various tip radiuses. The porous type air slide assured the shaft slided smoothly with controllable normal force in mN scale and had high positioning accuracy. The probe part which was directly in contact with target surface, can be applied to micro/nanoscale scratching as well as the measurement of sample topography by a simple tip change.展开更多
Based on direct absorption spectroscopy(DAS), a portable methane(CH_4) detection device was implemented. The device mainly includes a dual-channel non-dispersive infrared sensor(integrated with an infrared light sourc...Based on direct absorption spectroscopy(DAS), a portable methane(CH_4) detection device was implemented. The device mainly includes a dual-channel non-dispersive infrared sensor(integrated with an infrared light source, light path and pyroelectric detector), a driving circuit of the sensor, an ARM11 embedded Win CE system, and a Lab VIEW-based data-processing platform. Experiments were carried out with prepared CH_4 samples to investigate the sensing performance. The relative detection error is less than 9.14% within the measuring range of 0—7×10^(-2). For a CH_4 sample with concentration of 0(i.e., pure nitrogen), the measured concentration fluctuation range is-1.2×10^(-5)—+2×10^(-5). An Allan deviation analysis on the gas sample with concentration of 0 indicates that the 1σ limit of detection(LoD) of the device is 4.8×10^(-6) with an average time of 1 s. Experiments were performed on three CH_4 samples with different concentrations to test the response time, which is validated to be less than 20 s. Due to the small size of the ARM11 embedded system and the powerful data processing capability of the Lab VIEW platform, the proposed portable and miniaturized CH_4 sensor shows a good application prospect in mining operations and some other industrial fields.展开更多
基金Project supported by National Core Research Center (NCRC) and Chosun University, Korea
文摘A nano probe system which can measure precise contact force in mN scale was demonstrated. The nano probe micro parts or optical parts in nanometer range resolution and scratch was originally designed for on-machine measuring applications and one kind of contact type measuring probes was designed for miniaturized or microfactory system. It ideally should be of small size and able to measure surface topography in nanometer scale. A commercial capacitive displacement sensor was proposed. It was a new concept in nano probe systems which can measure the displacement of shaft driven by the variation of surface topography. The nano probe mainly consisted of three parts: a capacitive displacement sensor, a porous type air slide and a contact probe part with various tip radiuses. The porous type air slide assured the shaft slided smoothly with controllable normal force in mN scale and had high positioning accuracy. The probe part which was directly in contact with target surface, can be applied to micro/nanoscale scratching as well as the measurement of sample topography by a simple tip change.
基金supported by the National Natural Science Foundation of China(Nos.61627823,61307124 and 11404129)the Science and Technology Department of Jilin Province of China(Nos.20120707 and 20140307014SF)+1 种基金the Changchun Municipal Science and Technology Bureau(No.14KG022)the State Key Laboratory of Integrated Optoelectronics of Jilin University(No.IOSKL2012ZZ12)
文摘Based on direct absorption spectroscopy(DAS), a portable methane(CH_4) detection device was implemented. The device mainly includes a dual-channel non-dispersive infrared sensor(integrated with an infrared light source, light path and pyroelectric detector), a driving circuit of the sensor, an ARM11 embedded Win CE system, and a Lab VIEW-based data-processing platform. Experiments were carried out with prepared CH_4 samples to investigate the sensing performance. The relative detection error is less than 9.14% within the measuring range of 0—7×10^(-2). For a CH_4 sample with concentration of 0(i.e., pure nitrogen), the measured concentration fluctuation range is-1.2×10^(-5)—+2×10^(-5). An Allan deviation analysis on the gas sample with concentration of 0 indicates that the 1σ limit of detection(LoD) of the device is 4.8×10^(-6) with an average time of 1 s. Experiments were performed on three CH_4 samples with different concentrations to test the response time, which is validated to be less than 20 s. Due to the small size of the ARM11 embedded system and the powerful data processing capability of the Lab VIEW platform, the proposed portable and miniaturized CH_4 sensor shows a good application prospect in mining operations and some other industrial fields.