In Mexico the predominant sheep production system is the semi-extensive with grazing during the day and stanchion afternoon and night. Sheep herd are usually small, approximately 10 to 75 heads. The objectives of thes...In Mexico the predominant sheep production system is the semi-extensive with grazing during the day and stanchion afternoon and night. Sheep herd are usually small, approximately 10 to 75 heads. The objectives of these systems are savings and marketing of lambs. Meat is the main economic product of this kind, the breeding is long, which do not control the delivery dates and ages of the sheep are not uniform, affecting the demand for the local market (for the months of June and December). Therefore the aim of this work was implement a technology that allows the grouping of the estrus and therefore group deliveries for batches of uniform lambs. This technology was designed to suppress the estrus and heifers growth promoter of feedlots, this technology is melengestrol acetate (MGA) which is a synthetic progesterone oral administration that it is easy to manage in the food or alone, economic that it does not represent any risk for sheep females of abortive type, evaluating the effect of the MGA on rate of estrus and gestation in sheep. Work developed in the municipality of Charo from Michoac^in State, M6xico, 20 hair sheep divided in two groups of 10 female, group one treated with MGA and group tow was the whitens. 100% of the sheep treated with a dose of 0.45 mg MGA/head/day for 17 days orally, presented estrus grouped in 5-10 days; however only 50% of the sheep of the witness group presented estrus. In the experimental group there was a rate of 70% with a gestation difference time of no more than ten days gestation and witness group 50%. The MGA is an efficient alternative for the producer of sheep when administered 0.45 mg MGA/head/day for 17 days because inhibits the estrus and once withdrawn treatment manifests estrus synch with which get a rate of gestation elevated by natural riding.展开更多
Study of plant roots and the diversity of soil micro biota, such as bacteria, fungi and microfauna associated with them, is important for understanding the ecological complexities between diverse plants, microbes, soi...Study of plant roots and the diversity of soil micro biota, such as bacteria, fungi and microfauna associated with them, is important for understanding the ecological complexities between diverse plants, microbes, soil and climates and their role in phytoremediation of contaminated soils. The arbuscular mycorrhizal fungi (AMF) are universal and ubiquitous rhizosphere mi-croflora forming symbiosis with plant roots and acting as biofertilizers, bioprotactants, and biodegraders. In addition to AMF, soils also contain various antagonistic and beneficial bacteria such as root pathogens, plant growth promoting rhizobacteria including free-living and symbiotic N-fixers, and mycorrhiza helping bacteria. Their potential role in phytoremediation of heavy metal (HM) contaminated soils and water is becoming evident although there is need to completely understand the ecological complexities of the plant-microbe-soil interactions and their better exploitation as consortia in remediation strategies employed for contaminated soils. These multitrophic root microbial associations deserve multi-disciplinary investigations using molecular, biochemical, and physiological techniques. Ecosystem restoration of heavy metal contaminated soils practices need to incorporate microbial bio-technology research and development. This review highlights the ecological complexity and diversity of plant-microbe-soil combinations, particularly AM and provides an overview on the recent developments in this area. It also discusses the role AMF play in phytorestoration of HM contaminated soils, i.e. mycorrhizoremediation.展开更多
The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and ...The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and development when inoculated as plant growth-promoting rhizobacteria (PGPR). The four rhizobacteria were tested in vitro for PGPR activities and on spinach and pepper in pot experiments. The inoculants are all positive for ammonia (NH3 ), catalase, hydrogen cyanide (HCN), phosphate solubilization and siderophore production. Among the inoculants, E. americana NWU59 is oxidase negative. P. putida NWU12 and P. fluorescence NWU65 are producing indole-3-acetic acid (IAA). The inoculants exhibit some PGPR activities and thus tested in the screen-house. Treatments are control (water) and the four inoculants. Rhizobacterial inoculants increase spinach (17.14%-21.43%) and pepper (15.0%-37.5%) plant heights over the control. Such inoculants have the potential of improving plant yield components and may be used as biofertilizer.展开更多
Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angioge...Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.展开更多
文摘In Mexico the predominant sheep production system is the semi-extensive with grazing during the day and stanchion afternoon and night. Sheep herd are usually small, approximately 10 to 75 heads. The objectives of these systems are savings and marketing of lambs. Meat is the main economic product of this kind, the breeding is long, which do not control the delivery dates and ages of the sheep are not uniform, affecting the demand for the local market (for the months of June and December). Therefore the aim of this work was implement a technology that allows the grouping of the estrus and therefore group deliveries for batches of uniform lambs. This technology was designed to suppress the estrus and heifers growth promoter of feedlots, this technology is melengestrol acetate (MGA) which is a synthetic progesterone oral administration that it is easy to manage in the food or alone, economic that it does not represent any risk for sheep females of abortive type, evaluating the effect of the MGA on rate of estrus and gestation in sheep. Work developed in the municipality of Charo from Michoac^in State, M6xico, 20 hair sheep divided in two groups of 10 female, group one treated with MGA and group tow was the whitens. 100% of the sheep treated with a dose of 0.45 mg MGA/head/day for 17 days orally, presented estrus grouped in 5-10 days; however only 50% of the sheep of the witness group presented estrus. In the experimental group there was a rate of 70% with a gestation difference time of no more than ten days gestation and witness group 50%. The MGA is an efficient alternative for the producer of sheep when administered 0.45 mg MGA/head/day for 17 days because inhibits the estrus and once withdrawn treatment manifests estrus synch with which get a rate of gestation elevated by natural riding.
文摘Study of plant roots and the diversity of soil micro biota, such as bacteria, fungi and microfauna associated with them, is important for understanding the ecological complexities between diverse plants, microbes, soil and climates and their role in phytoremediation of contaminated soils. The arbuscular mycorrhizal fungi (AMF) are universal and ubiquitous rhizosphere mi-croflora forming symbiosis with plant roots and acting as biofertilizers, bioprotactants, and biodegraders. In addition to AMF, soils also contain various antagonistic and beneficial bacteria such as root pathogens, plant growth promoting rhizobacteria including free-living and symbiotic N-fixers, and mycorrhiza helping bacteria. Their potential role in phytoremediation of heavy metal (HM) contaminated soils and water is becoming evident although there is need to completely understand the ecological complexities of the plant-microbe-soil interactions and their better exploitation as consortia in remediation strategies employed for contaminated soils. These multitrophic root microbial associations deserve multi-disciplinary investigations using molecular, biochemical, and physiological techniques. Ecosystem restoration of heavy metal contaminated soils practices need to incorporate microbial bio-technology research and development. This review highlights the ecological complexity and diversity of plant-microbe-soil combinations, particularly AM and provides an overview on the recent developments in this area. It also discusses the role AMF play in phytorestoration of HM contaminated soils, i.e. mycorrhizoremediation.
基金supported by National Research Foundation of South Africa
文摘The aim of this work was to see whether Pseudomonas putida NWU12, Pseudomonas fluorescence NWU65, Vibrio fluvialis NWU37 and Ewingella americana NWU59 are beneficial to plants and are able to promote plant growth and development when inoculated as plant growth-promoting rhizobacteria (PGPR). The four rhizobacteria were tested in vitro for PGPR activities and on spinach and pepper in pot experiments. The inoculants are all positive for ammonia (NH3 ), catalase, hydrogen cyanide (HCN), phosphate solubilization and siderophore production. Among the inoculants, E. americana NWU59 is oxidase negative. P. putida NWU12 and P. fluorescence NWU65 are producing indole-3-acetic acid (IAA). The inoculants exhibit some PGPR activities and thus tested in the screen-house. Treatments are control (water) and the four inoculants. Rhizobacterial inoculants increase spinach (17.14%-21.43%) and pepper (15.0%-37.5%) plant heights over the control. Such inoculants have the potential of improving plant yield components and may be used as biofertilizer.
基金Project supported by the Special Fund for Cooperation of Local Government and College(Schools and Institutes)in Changchun,Jilin Province(No.17DY024),China。
文摘Combined radiation-wound injury(CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells(HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells(HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8(CCK-8) assay. The secretion of pro-inflammatory cytokines(human granulocyte macrophage-colony stimulating factor(GM-CSF), interleukin(IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay(ELISA). The expression of pro-angiogenic factors(vascular endothelial growth factor(VEGF) and basic fibroblast growth factor(b FGF)) mRNA was detected by real-time quantitative polymerase chain reaction(RT-qPCR) assay. Relevant molecules of the nuclear factor-κB(NF-κB) and Janus kinase(JAK)/signal transducer and activator of transcription(STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs(HPMSCs/leptin) exhibited better cell proliferation, migration, and angiogenic potential(expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines(human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.