[Objective]we checked the role of various proportion of three growth promoting bacteria to determine the optimum proportion with greater symbiosis in cucumber seedlings. [Method]Three strains of Rhodopseudomonas palus...[Objective]we checked the role of various proportion of three growth promoting bacteria to determine the optimum proportion with greater symbiosis in cucumber seedlings. [Method]Three strains of Rhodopseudomonas palustrisSH2,Bacillus megateriumSHⅡ3,Bacillus mucilaginosusSH1 were applied in this study. Cucumber were cultured in plastic pot,inoculating mixture with seven different proportion for 28 days. [Result]2:1:2 treatment had the strongest effect on N,P,K uptake and concentrations in the soils,on increasing enrich of Fe and Zn inroots and shoots and on plant height,stem diameter,dry weight,relative chlorophyll contents. Treatments of 1:1:2 and 1:1:1 were following ,while the weakest effect was given by 1:2:2,2:2:1 and 1:2:1 treatments. [Conclusion]2:1:2 is the optimum proportion of the three bacteria for nutrition uptake and growth of cucumber seedlings.展开更多
Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth and bacterial exopolysaccharide (EPS) can also help to mitigate salinity...Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth and bacterial exopolysaccharide (EPS) can also help to mitigate salinity stress by reducing the content of Na+ available for plant uptake. In this study, native bacterial strains of wheat rhizosphere in soils of Varanasi, India, were screened to identify the EPS-producing salt-tolerant rhizobacteria with plant growth-promoting traits. The various rhizobacteria strains were isolated and identified using 16S rDNA sequencing. The plant growth-promoting effect of inoculation of seedlings with these bacterial strains was evaluated under soil salinity conditions in a pot experiment. Eleven bacterial strains which initially showed tolerance up to 80 g L-1 NaC1 also exhibited an EPS-producing potential. The results suggested that the isolated bacterial strains demonstrated some of the plant growth-promoting traits such as phosphate solubilizing ability and production of auxin, proline, reducing sugars, and total soluble sugars. Furthermore, the inoculated wheat plants had an increased biomass compared to the unoinoculated plants.展开更多
Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain...Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain W19 can produce secondary metabolites (iturin and bacillomycin D) effectively against Fusarium oxysporum f. sp. cubense (FOC). In this study, the ability of a bio-organic fertilizer (BIO) containing strain W19 to promote plant growth and suppress the Fusarium wilt of banana was evaluated in both pot and field experiments. The results showed that application of BIO significantly promoted the growth and fruit yield of banana while suppressing the banana Fusariurn wilt disease. To further determine the beneficial mechanisms of the strain, the colonization of green fluorescent protein-tagged strain W19 on banana roots was observed using confocal laser scanning microscopy and scanning electron microscopy. The effect of banana root exudates on the formation of biofilm of strain W19 indicated that the banana root exudates may enhance colonization. In addition, the strain W19 was able to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone. The results of these experiments revealed that the application of strain W19-enriched BIO improved the banana root colonization of strain W19 and growth of banana and suppressed the Fusarium wilt. The PGPR strain W19 can be a useful biocontrol agent for the production of banana under field conditions.展开更多
文摘[Objective]we checked the role of various proportion of three growth promoting bacteria to determine the optimum proportion with greater symbiosis in cucumber seedlings. [Method]Three strains of Rhodopseudomonas palustrisSH2,Bacillus megateriumSHⅡ3,Bacillus mucilaginosusSH1 were applied in this study. Cucumber were cultured in plastic pot,inoculating mixture with seven different proportion for 28 days. [Result]2:1:2 treatment had the strongest effect on N,P,K uptake and concentrations in the soils,on increasing enrich of Fe and Zn inroots and shoots and on plant height,stem diameter,dry weight,relative chlorophyll contents. Treatments of 1:1:2 and 1:1:1 were following ,while the weakest effect was given by 1:2:2,2:2:1 and 1:2:1 treatments. [Conclusion]2:1:2 is the optimum proportion of the three bacteria for nutrition uptake and growth of cucumber seedlings.
基金Supported by the Council of Scientific and Industrial Research,Human Research Development Group,Government of India
文摘Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can play an important role in alleviating soil salinity stress during plant growth and bacterial exopolysaccharide (EPS) can also help to mitigate salinity stress by reducing the content of Na+ available for plant uptake. In this study, native bacterial strains of wheat rhizosphere in soils of Varanasi, India, were screened to identify the EPS-producing salt-tolerant rhizobacteria with plant growth-promoting traits. The various rhizobacteria strains were isolated and identified using 16S rDNA sequencing. The plant growth-promoting effect of inoculation of seedlings with these bacterial strains was evaluated under soil salinity conditions in a pot experiment. Eleven bacterial strains which initially showed tolerance up to 80 g L-1 NaC1 also exhibited an EPS-producing potential. The results suggested that the isolated bacterial strains demonstrated some of the plant growth-promoting traits such as phosphate solubilizing ability and production of auxin, proline, reducing sugars, and total soluble sugars. Furthermore, the inoculated wheat plants had an increased biomass compared to the unoinoculated plants.
基金supported by the National Natural Science Foundation of China (Nos. 31572212 and 31372142)the National Key Basic Research Program of China (No. 2015CB150503)+5 种基金the Chinese Ministry of Science and Technology (No. 2013AA102802)the Natural Science Foundation of Jiangsu Province, China (No. BK20150059)the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions of Chinathe 111 Project of China (No. B12009)the National Training Program of Innovation and Entrepreneurship for Undergraduates of China (No. 201410307089)the "Qing Lan" Project of China
文摘Plant growth-promoting rhizobacteria (PGPR) are considered to be the most promising agents for cash crop production via increasing crop yields and decreasing disease occurrence. The Bacillus amyloliquefaciens strain W19 can produce secondary metabolites (iturin and bacillomycin D) effectively against Fusarium oxysporum f. sp. cubense (FOC). In this study, the ability of a bio-organic fertilizer (BIO) containing strain W19 to promote plant growth and suppress the Fusarium wilt of banana was evaluated in both pot and field experiments. The results showed that application of BIO significantly promoted the growth and fruit yield of banana while suppressing the banana Fusariurn wilt disease. To further determine the beneficial mechanisms of the strain, the colonization of green fluorescent protein-tagged strain W19 on banana roots was observed using confocal laser scanning microscopy and scanning electron microscopy. The effect of banana root exudates on the formation of biofilm of strain W19 indicated that the banana root exudates may enhance colonization. In addition, the strain W19 was able to produce indole-3-acetic acid (IAA), a plant growth-promoting hormone. The results of these experiments revealed that the application of strain W19-enriched BIO improved the banana root colonization of strain W19 and growth of banana and suppressed the Fusarium wilt. The PGPR strain W19 can be a useful biocontrol agent for the production of banana under field conditions.