Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect sei...Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect seismic data processing and imaging. We developed a high-resolution Radon transform algorithm and used it to predict receiver ghosts from VDS data. The receiver ghost reflections are subtracted and removed from the raw data. We propose a forward Radon transform operator of VDS data in the frequency domain and, based on the ray paths of the receiver ghosts, we propose an inverse Radon transform operator. We apply the proposed methodology to model and field data with good results. We use matching and subtracting modules of commercially available seismic data processing software to remove the receiver ghosts. The frequency notches are compensated and the effective frequency bandwidth of the seismic data broadens.展开更多
Knowledge extraction from sensitive data often needs collaborative work. Statistical databases are generated from such data and shared among various stakeholders. In this context, the ownership protection of shared da...Knowledge extraction from sensitive data often needs collaborative work. Statistical databases are generated from such data and shared among various stakeholders. In this context, the ownership protection of shared data becomes important. Watermarking is emerging to be a very effective tool for imposing ownership rights on various digital data formats. Watermarking of such datasets may bring distortions in the data. Consequently, the extracted knowledge may be inaccurate. These distortions are controlled by the usability constraints, which in turn limit the available bandwidth for watermarking. Large bandwidth ensures robustness; however, it may degrade the quality of the data. Such a situation can be resolved by optimizing the available bandwidth subject to the usability constraints. Optimization techniques, particularly bioinspired techniques, have become a preferred choice for solving such issues during the past few years. In this paper, we investigate the usability of various optimization schemes for identifying the maximum available bandwidth to achieve two objectives:(1) preserving the knowledge stored in the data;(2) maximizing the available bandwidth subject to the usability constraints to achieve maximum robustness. The first objective is achieved with a usability constraint model, which ensures that the knowledge is not compromised as a result of watermark embedding. The second objective is achieved by finding the maximum bandwidth subject to the usability constraints specified in the first objective. The performance of optimization schemes is evaluated using different metrics.展开更多
The ultra-small textured surface of multicrystalline silicon solar cell,prepared by electroless chemical-etching method,shows an excellent anti-reflection property over a wide spectral bandwidth.A novel back surface p...The ultra-small textured surface of multicrystalline silicon solar cell,prepared by electroless chemical-etching method,shows an excellent anti-reflection property over a wide spectral bandwidth.A novel back surface protection method and front surface passivation method have been used in the multicrystalline solar cells with ultra-small textured surfaces.With these improvements,the back surface remains intact after the etch process and the efficient minority lifetime is apparently increased.The test result shows that the solar cell with ultra-small textured surface can obtain better electrical performances by these improvements.展开更多
文摘Receiver ghost reflections adversely affect variable-depth streamer (VDS) data acquisition. In addition, the frequency notches caused by the interference between receiver ghosts and primary waves strongly affect seismic data processing and imaging. We developed a high-resolution Radon transform algorithm and used it to predict receiver ghosts from VDS data. The receiver ghost reflections are subtracted and removed from the raw data. We propose a forward Radon transform operator of VDS data in the frequency domain and, based on the ray paths of the receiver ghosts, we propose an inverse Radon transform operator. We apply the proposed methodology to model and field data with good results. We use matching and subtracting modules of commercially available seismic data processing software to remove the receiver ghosts. The frequency notches are compensated and the effective frequency bandwidth of the seismic data broadens.
文摘Knowledge extraction from sensitive data often needs collaborative work. Statistical databases are generated from such data and shared among various stakeholders. In this context, the ownership protection of shared data becomes important. Watermarking is emerging to be a very effective tool for imposing ownership rights on various digital data formats. Watermarking of such datasets may bring distortions in the data. Consequently, the extracted knowledge may be inaccurate. These distortions are controlled by the usability constraints, which in turn limit the available bandwidth for watermarking. Large bandwidth ensures robustness; however, it may degrade the quality of the data. Such a situation can be resolved by optimizing the available bandwidth subject to the usability constraints. Optimization techniques, particularly bioinspired techniques, have become a preferred choice for solving such issues during the past few years. In this paper, we investigate the usability of various optimization schemes for identifying the maximum available bandwidth to achieve two objectives:(1) preserving the knowledge stored in the data;(2) maximizing the available bandwidth subject to the usability constraints to achieve maximum robustness. The first objective is achieved with a usability constraint model, which ensures that the knowledge is not compromised as a result of watermark embedding. The second objective is achieved by finding the maximum bandwidth subject to the usability constraints specified in the first objective. The performance of optimization schemes is evaluated using different metrics.
基金supported by the National Basic Research Program of China("973" Project) (Grant No. 2009CB939703)the National Natural Science Foundation of China (Grant Nos. 11104319,51172268)the Chinese Academy of Solar Energy Action Plan and by Beijing Science and Technology Project (Grant No. Y2BK024001)
文摘The ultra-small textured surface of multicrystalline silicon solar cell,prepared by electroless chemical-etching method,shows an excellent anti-reflection property over a wide spectral bandwidth.A novel back surface protection method and front surface passivation method have been used in the multicrystalline solar cells with ultra-small textured surfaces.With these improvements,the back surface remains intact after the etch process and the efficient minority lifetime is apparently increased.The test result shows that the solar cell with ultra-small textured surface can obtain better electrical performances by these improvements.