A new system-corrected CMOS audio power AMP is presented. Consisting of four single-end OPAs,this structure is a pseudo-differential system. Compared to conventional CMOS power AMPs, it has the merits of low power con...A new system-corrected CMOS audio power AMP is presented. Consisting of four single-end OPAs,this structure is a pseudo-differential system. Compared to conventional CMOS power AMPs, it has the merits of low power consumption, extremely low THD,easy compensation, and good driving capability. With 1st silicon 0.25μm 1P4M CMOS technology and a 3V power supply,the output range can be 4Vpp when driving an 8Ω‖ 300pF load, while its power dissipation is less than 3mW. The THD is better than 0. 003% at 1kHz. A new over-current protection circuit, which can effectively protect the power output circuits on the chip, is also demonstrated.展开更多
In this paper, the relationship between the protection and control of asynchronous motor and all sorts of protection devices for asynchronous motor are briefly expounded. The protection of motor has mainly developed i...In this paper, the relationship between the protection and control of asynchronous motor and all sorts of protection devices for asynchronous motor are briefly expounded. The protection of motor has mainly developed in three stages: thermal relay, electronic integrated protector, and microcomputer protector. In terms of sampling methods, the protection can be divided into two types: (1) the sampling current detection, which is implemented using a thermal relay with circuit breaker for the thermomagnetic tripping motor protection, and an electronic and solid state relay with circuit breaker and sof~ starter for the thermomagnetic tripping motor protection; (2) the sampling temperature detection, which is to directly detect electromotor winding temperature using bimetallic strip temperature relay, thermal protector, detecting coil, and heat resistance temperature relay. However, the second method is very expensive and difficult to maintain because a motor winding is necessary to directly bury, so it is used only in the cases requiring some frequent operations. Finally, the harmonious cooperation between overload protection device and motor or between overload protection device and short circuit protection device must be considered regardless of the protection device model.展开更多
This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossing...This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.展开更多
The protection of distribution networks is facing new challenges from an increasing amount of DG (distributed generation). Even though current technology provides satisfactory solutions to manage this new situation,...The protection of distribution networks is facing new challenges from an increasing amount of DG (distributed generation). Even though current technology provides satisfactory solutions to manage this new situation, LOM (loss-of-mains protection) is still considered problematic. The solution proposed in this paper focuses on the use of a line differential protection relay. It inherently contains a suitable communication channel and provides absolutely selective protection for the feeder. Furthermore, it prevents the feeder relays from false tripping for faults on the neighboring feeder. The present trend in protection communication points towards the use of fiber optics. For line differential protection, this means a fast and high-capacity communication link which enables the implementation of many advanced protection functions. In addition, a solid foundation for such a communication link is offered by the new IEC 61850 standard and Ethernet technologies. The basic functionality of the line differential protection enables the operation of both the feeder protection and the DG protection for any fault on the feeder. Furthermore, basic LOM protection methods can be applied as backup protection for failures on the communication link.展开更多
The paper has presented the impact on the line protection performance with the introduction of MUs (merging units) in the process bus level. The paper begins with the introduction on modem digital substation structu...The paper has presented the impact on the line protection performance with the introduction of MUs (merging units) in the process bus level. The paper begins with the introduction on modem digital substation structure and process bus. Then, the paper describes the performances of different sensors such as CTs (current transformers), CVTs (capacitive voltage transformers), FOCS (fiber optical current transducers) and FOVS (fiber optical voltage transducers). With the use of above transducers together with MUs, the performance of distance protection function and line differential protection function have been investigated and presented. Finally, conclusions based on the study are presented in the paper.展开更多
文摘A new system-corrected CMOS audio power AMP is presented. Consisting of four single-end OPAs,this structure is a pseudo-differential system. Compared to conventional CMOS power AMPs, it has the merits of low power consumption, extremely low THD,easy compensation, and good driving capability. With 1st silicon 0.25μm 1P4M CMOS technology and a 3V power supply,the output range can be 4Vpp when driving an 8Ω‖ 300pF load, while its power dissipation is less than 3mW. The THD is better than 0. 003% at 1kHz. A new over-current protection circuit, which can effectively protect the power output circuits on the chip, is also demonstrated.
文摘In this paper, the relationship between the protection and control of asynchronous motor and all sorts of protection devices for asynchronous motor are briefly expounded. The protection of motor has mainly developed in three stages: thermal relay, electronic integrated protector, and microcomputer protector. In terms of sampling methods, the protection can be divided into two types: (1) the sampling current detection, which is implemented using a thermal relay with circuit breaker for the thermomagnetic tripping motor protection, and an electronic and solid state relay with circuit breaker and sof~ starter for the thermomagnetic tripping motor protection; (2) the sampling temperature detection, which is to directly detect electromotor winding temperature using bimetallic strip temperature relay, thermal protector, detecting coil, and heat resistance temperature relay. However, the second method is very expensive and difficult to maintain because a motor winding is necessary to directly bury, so it is used only in the cases requiring some frequent operations. Finally, the harmonious cooperation between overload protection device and motor or between overload protection device and short circuit protection device must be considered regardless of the protection device model.
文摘This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.
文摘The protection of distribution networks is facing new challenges from an increasing amount of DG (distributed generation). Even though current technology provides satisfactory solutions to manage this new situation, LOM (loss-of-mains protection) is still considered problematic. The solution proposed in this paper focuses on the use of a line differential protection relay. It inherently contains a suitable communication channel and provides absolutely selective protection for the feeder. Furthermore, it prevents the feeder relays from false tripping for faults on the neighboring feeder. The present trend in protection communication points towards the use of fiber optics. For line differential protection, this means a fast and high-capacity communication link which enables the implementation of many advanced protection functions. In addition, a solid foundation for such a communication link is offered by the new IEC 61850 standard and Ethernet technologies. The basic functionality of the line differential protection enables the operation of both the feeder protection and the DG protection for any fault on the feeder. Furthermore, basic LOM protection methods can be applied as backup protection for failures on the communication link.
文摘The paper has presented the impact on the line protection performance with the introduction of MUs (merging units) in the process bus level. The paper begins with the introduction on modem digital substation structure and process bus. Then, the paper describes the performances of different sensors such as CTs (current transformers), CVTs (capacitive voltage transformers), FOCS (fiber optical current transducers) and FOVS (fiber optical voltage transducers). With the use of above transducers together with MUs, the performance of distance protection function and line differential protection function have been investigated and presented. Finally, conclusions based on the study are presented in the paper.