Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. ...Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. This concept aims to move from "connect and forget" philosophy towards a full integration of DERs. Micro-grids can provide numerous economic and environmental benefits for end-customers, utilities and society. However, their implementation poses great technical challenges, such as a new philosophy in design of protection systems. In this work, a micro-grid protection scheme is presented based on positive-sequence component using phasor measurement units(PMUs) and a central protection unit(CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and looped micro-grids against different types of faults with the capability of single-phase tripping. Furthermore, since the CPU is capable of updating its pickup values(upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration(such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. Finally, in order to verify the effectiveness of the suggested scheme and the CPU, several simulations have been undertaken by using DIg SILENT Power Factory and MATLAB software packages.展开更多
The purpose of this article is to present an additional overloading assessment scheme to the current protection scheme, which can be applied in the low voltage distribution network to prevent overloading of network as...The purpose of this article is to present an additional overloading assessment scheme to the current protection scheme, which can be applied in the low voltage distribution network to prevent overloading of network assets. As higher penetration of distributed generators is envisioned among distribution networks, the network operators will have an challenging task in the future to maintain the reliability and quality of supply. The distribution networks are going to be challenged simultaneously by increasing penetration of distributed generators and by increasing loading (inter alia heat pumps, air conditioners or electric vehicles), which will change the operational perspective of the future distribution networks. Presented simulation results show that the increasing penetration of those appliances can jeopardize the functionality of current protection scheme in distribution networks. Therefore, an additional scheme for assessment of network overloading applicable at low voltage distribution networks is proposed and the application of this scheme, supported by smart metering infrastructure, is demonstrated in a case study. The proposed overloading assessment scheme should help the network operators to increase the flexibility of distribution networks, their hosting capacity, safety and reliability.展开更多
As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guara...As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guarantees, WMNs are susceptible to various kinds of attack. In this paper, we focus on node social selfish attack, which decreases network performance significantly. Since this type of attack is not obvious to detect, we propose a security routing scheme based on social network and reputation evaluation to solve this attack issue. First, we present a dynamic reputation model to evaluate a node's routing behavior, from which we can identify selfish attacks and selfish nodes. Furthermore, a social characteristic evaluation model is studied to evaluate the social relationship among nodes. Groups are built based on the similarity of node social status and we can get a secure routing based on these social groups of nodes. In addition, in our scheme, nodes are encouraged to enter into multiple groups and friend nodes are recommended to join into groups to reduce the possibility of isolated nodes. Simulation results demonstrate that our scheme is able to reflect node security status, and routings are chosen and adjusted according to security status timely and accurately so that the safety and reliability of routing are improved.展开更多
文摘Micro-grids comprise low voltage distribution systems with distributed energy resources(DERs) and controllable loads which can operate connected to the medium voltage grid or islanded in a controlled coordinated way. This concept aims to move from "connect and forget" philosophy towards a full integration of DERs. Micro-grids can provide numerous economic and environmental benefits for end-customers, utilities and society. However, their implementation poses great technical challenges, such as a new philosophy in design of protection systems. In this work, a micro-grid protection scheme is presented based on positive-sequence component using phasor measurement units(PMUs) and a central protection unit(CPU). The salient feature of the proposed scheme in comparison with the previous works is that it has the ability to protect both radial and looped micro-grids against different types of faults with the capability of single-phase tripping. Furthermore, since the CPU is capable of updating its pickup values(upstream and downstream equivalent positive-sequence impedances of each line) after the first change in the micro-grid configuration(such as transferring from grid-connected to islanded mode and or disconnection of a line, bus, or DER either in grid-connected mode or in islanded mode), it can protect micro-grid against subsequent faults. Finally, in order to verify the effectiveness of the suggested scheme and the CPU, several simulations have been undertaken by using DIg SILENT Power Factory and MATLAB software packages.
文摘The purpose of this article is to present an additional overloading assessment scheme to the current protection scheme, which can be applied in the low voltage distribution network to prevent overloading of network assets. As higher penetration of distributed generators is envisioned among distribution networks, the network operators will have an challenging task in the future to maintain the reliability and quality of supply. The distribution networks are going to be challenged simultaneously by increasing penetration of distributed generators and by increasing loading (inter alia heat pumps, air conditioners or electric vehicles), which will change the operational perspective of the future distribution networks. Presented simulation results show that the increasing penetration of those appliances can jeopardize the functionality of current protection scheme in distribution networks. Therefore, an additional scheme for assessment of network overloading applicable at low voltage distribution networks is proposed and the application of this scheme, supported by smart metering infrastructure, is demonstrated in a case study. The proposed overloading assessment scheme should help the network operators to increase the flexibility of distribution networks, their hosting capacity, safety and reliability.
基金supported in part by National Natural Science Foundation of China(Grant Nos.61302071,61471109,61502075)Fundamental Research Funds for the Central Universities(Grant Nos.N150404015,DUT15QY06,DUT15RC(3)009)+2 种基金China Postdoctoral Science Foundation Funded Project(Grant No.2015M580224)Liaoning Province Doctor Startup Fund(Grant No.201501166)State Key Laboratory for Novel Software Technology,Nanjing University(Grant No.KFKT2015B12)
文摘As an extension of wireless ad hoc and sensor networks, wireless mesh networks(WMNs) are employed as an emerging key solution for wireless broadband connectivity improvement. Due to the lack of physical security guarantees, WMNs are susceptible to various kinds of attack. In this paper, we focus on node social selfish attack, which decreases network performance significantly. Since this type of attack is not obvious to detect, we propose a security routing scheme based on social network and reputation evaluation to solve this attack issue. First, we present a dynamic reputation model to evaluate a node's routing behavior, from which we can identify selfish attacks and selfish nodes. Furthermore, a social characteristic evaluation model is studied to evaluate the social relationship among nodes. Groups are built based on the similarity of node social status and we can get a secure routing based on these social groups of nodes. In addition, in our scheme, nodes are encouraged to enter into multiple groups and friend nodes are recommended to join into groups to reduce the possibility of isolated nodes. Simulation results demonstrate that our scheme is able to reflect node security status, and routings are chosen and adjusted according to security status timely and accurately so that the safety and reliability of routing are improved.