Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is o...Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.展开更多
We experimentally demonstrate and analyze a 10 Gbit/s full duplex wavelength division multiplexing passive optical net- work (WDM-PON) system. A non-return-to-zero differential phase shift keying (NRZ-DPSK) modula...We experimentally demonstrate and analyze a 10 Gbit/s full duplex wavelength division multiplexing passive optical net- work (WDM-PON) system. A non-return-to-zero differential phase shift keying (NRZ-DPSK) modulation technique is first utilized for downlink direction, and then the downlink signal is re-modulated for the uplink direction using intensity modulation technique of on-off keying (0OK) with a data rate of 10 Gbit/s per channel. An effective colorless WDM-PON full duplex transmission system is achieved for the data rate of 10 Gbit/s per channel with a channel spacing of 60 GHz over the distance of 25 km with low power penalty.展开更多
基金Project(2012CB316100)supported by the National Basic Research Program of ChinaProjects(K50511010005,K50511010015)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(B08038)supported by the"111"Program of China
文摘Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.
基金supported by the National Basic Research program of China (No.2010CB328300)the Fundamental Research Funds for the Central Universities (No.2009RC0314)+2 种基金the National Natural Science Foundation of China (Nos.61077050, 61077014 and 60932004)the BUPT Young Foundation (No.2009CZ07)the Open Foundation of State Key Laboratory of Optical Communication Technologies and Networks (WRI) (No.2010OCTN-02)
文摘We experimentally demonstrate and analyze a 10 Gbit/s full duplex wavelength division multiplexing passive optical net- work (WDM-PON) system. A non-return-to-zero differential phase shift keying (NRZ-DPSK) modulation technique is first utilized for downlink direction, and then the downlink signal is re-modulated for the uplink direction using intensity modulation technique of on-off keying (0OK) with a data rate of 10 Gbit/s per channel. An effective colorless WDM-PON full duplex transmission system is achieved for the data rate of 10 Gbit/s per channel with a channel spacing of 60 GHz over the distance of 25 km with low power penalty.