输入信号的方向向量出现偏差时,最小均方误差算法会出现收敛速度慢、输出性能下降、不稳定等问题.本文针对这些问题,对传统LMS(least mean squares)算法进行了改进,提出了基于Bayesian方法的鲁棒约束LMS算法.该算法利用信号的先验信息...输入信号的方向向量出现偏差时,最小均方误差算法会出现收敛速度慢、输出性能下降、不稳定等问题.本文针对这些问题,对传统LMS(least mean squares)算法进行了改进,提出了基于Bayesian方法的鲁棒约束LMS算法.该算法利用信号的先验信息对实际信号方向向量进行估计,有效地抑制了方向向量偏差的影响,并提高了系统的鲁棒性.阵列输出的信干噪比得到了改善,更加接近最优值.仿真实验验证了该算法的有效性和可行性.展开更多
文摘输入信号的方向向量出现偏差时,最小均方误差算法会出现收敛速度慢、输出性能下降、不稳定等问题.本文针对这些问题,对传统LMS(least mean squares)算法进行了改进,提出了基于Bayesian方法的鲁棒约束LMS算法.该算法利用信号的先验信息对实际信号方向向量进行估计,有效地抑制了方向向量偏差的影响,并提高了系统的鲁棒性.阵列输出的信干噪比得到了改善,更加接近最优值.仿真实验验证了该算法的有效性和可行性.