An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation functi...An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation function of receiver Signal-to-Noise Ratio(SNR),the sectional integral method is used,instead of the cumulative density function method which is ordinarily used by the deduction of the outage probability of S-R-D link.The accurate symbol error rate of a dual-hop relay cooperative network is obtained with the closed-form Moment Genoration Function (MGF) expression.The correctness of the symbol error rate is verified through numerical simulations and is compared with other analytical methods.These deductions clearly show that the distributed cooperative diversity network presented has strong superiorities in overcoming severe fading and can achieve full diversity order.展开更多
基金supported by Important National Science & Technology Specific Projects under Grant No.CX01011the Important National Science & Technology Specific Projects under Grant No.4101002+2 种基金the National Natural Science Foundation of China under Grants No.61002014,No.60972017,No.60972018the Excellent Young Teachers Program of MOE,PRC under Grant No.2009110120028the Research Fund for the Doctoral Program of Higher Education under Grants No.20091101110019,No.20070007019
文摘An exact average symbol error rate analysis for the distributed dual-hop relay cooperative network with multiple relays in a Nakagami-m fading environment is presented.In the derivation of the moment generation function of receiver Signal-to-Noise Ratio(SNR),the sectional integral method is used,instead of the cumulative density function method which is ordinarily used by the deduction of the outage probability of S-R-D link.The accurate symbol error rate of a dual-hop relay cooperative network is obtained with the closed-form Moment Genoration Function (MGF) expression.The correctness of the symbol error rate is verified through numerical simulations and is compared with other analytical methods.These deductions clearly show that the distributed cooperative diversity network presented has strong superiorities in overcoming severe fading and can achieve full diversity order.