The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STF...The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.展开更多
Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduct...Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduction. In this paper, it was first used to analyze the parameters of undersampled signals. When some conditions are satisfied, the problem of frequency confusion can be solved. Results and Conclusion\ As an example, we analyze undersampled linear frequency modulated signal. The simulation results verify the effectiveness of HAF algorithm. Compared with time frequency distribution, HAF algorithm reduces computation burden to a great extent, needs weak boundary conditions and doesn't have boundary effect.展开更多
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time...The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.展开更多
In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effect...In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.展开更多
To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least sq...To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.展开更多
Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transf...A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transform (STFT). The main contribution is the construction of the 3D phase spectrogram (3DPS) and the 3D frequency spectrogram (3DFS). These new tools allow such specific test signals as small slope linear chirp, phase jump case of musical signal analysis is reported. The main objective is to and small frequency jump to be analyzed. An application detect small frequency and phase variations in order to characterize each type of sound attack without losing the amplitude information given by power spectrogram展开更多
A Transmitted Reference (TR) Ultra WideBand (UWB) signal with double hybrid Direct Sequence and Time Hopping (DS-TH) spreading is proposed and its symbol-level synchronization scheme is designed and analyzed. The prop...A Transmitted Reference (TR) Ultra WideBand (UWB) signal with double hybrid Direct Sequence and Time Hopping (DS-TH) spreading is proposed and its symbol-level synchronization scheme is designed and analyzed. The proposed signaling format can significantly reduce the search space while reducing the spectral lines and eliminating inter-frame interference and multi-user inter- ference. Detailed analysis of the proposed scheme is carried out. Synchronization performance of the proposed signaling format in multipath channel is derived and supported by computer simulation. The search step which is closely associated with the delay of data modulated pulses is analyzed. Using the TH code, the proposed signaling format and synchronization scheme especially works well in moderate and low data rate systems.展开更多
Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency comp...Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data.展开更多
To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive...To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.展开更多
Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
We numerically study the dynamics of meandering spiral waves in the excitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. Th...We numerically study the dynamics of meandering spiral waves in the excitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. The core location and size radius of the final attractors are computed, and they change with the position of the moving measuring point in a unique way. By the Fourier Spectral analysis, we find the frequency-locked behaviors different from the driving scheme of the external periodic force. It when the moving measuring point approaches closely is also found that the meandering spiral wave can be eliminated the boundary and its feedback gain is large enough. This offers an effective and convenient method for eliminating meandering spiral waves.展开更多
基金supported by Scientific Research Fund of Sichuan Provincial Education Departmentthe National Nature Science Foundation of China (No. 40873035)
文摘The S transform, which is a time-frequency representation known for its local spectral phase properties in signal processing, uniquely combines elements of wavelet transforms and the short-time Fourier transform (STFT). The fractional Fourier transform is a tool for non-stationary signal analysis. In this paper, we define the concept of the fractional S transform (FRST) of a signal, based on the idea of the fractional Fourier transform (FRFT) and S transform (ST), extend the S transform to the time-fractional frequency domain from the time- frequency domain to obtain the inverse transform, and study the FRST mathematical properties. The FRST, which has the advantages of FRFT and ST, can enhance the ST flexibility to process signals. Compared to the S transform, the FRST can effectively improve the signal time- frequency resolution capacity. Simulation results show that the proposed method is effective.
文摘Aim To find an effective and fast algorithm to analyze undersampled signals. Methods\ The advantage of high order ambiguity function(HAF) algorithm is that it can analyze polynomial phase signals by phase rank reduction. In this paper, it was first used to analyze the parameters of undersampled signals. When some conditions are satisfied, the problem of frequency confusion can be solved. Results and Conclusion\ As an example, we analyze undersampled linear frequency modulated signal. The simulation results verify the effectiveness of HAF algorithm. Compared with time frequency distribution, HAF algorithm reduces computation burden to a great extent, needs weak boundary conditions and doesn't have boundary effect.
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(2011ZX05005–005-008HZ and 2011ZX05006-002)
文摘The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.
基金This work was funded by National Natural Science Foundation of China-(No. 40474044).
文摘In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.
基金Doctoral Programme Foundation of Institution of Higher Education of China.
文摘To study the measurement of distance under the condition of the frequency modulation (FM) multi component signal of a short range radar, the multi points scattering model of a target, the TLS ESPRIT (total least square estimation of signal parameters via rotational invariance techniques) and the mathematical statistics methods were used. The method of computing single frequency signal's instantaneous frequency (IF) is unsuitable to the multi component signal. By using the method of the TLS ESPRIT combined with the mathematical statistics, the multi component signal's IF can be obtained. The computer simulation has shown that the method has the high accuracy for measuring the distance.
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
文摘A new lighting and enlargement on phase spectrogram (PS) and frequency spectrogram (FS) is presented in this paper. These representations result from the coupling of power spectrogram and short time Fourier transform (STFT). The main contribution is the construction of the 3D phase spectrogram (3DPS) and the 3D frequency spectrogram (3DFS). These new tools allow such specific test signals as small slope linear chirp, phase jump case of musical signal analysis is reported. The main objective is to and small frequency jump to be analyzed. An application detect small frequency and phase variations in order to characterize each type of sound attack without losing the amplitude information given by power spectrogram
文摘A Transmitted Reference (TR) Ultra WideBand (UWB) signal with double hybrid Direct Sequence and Time Hopping (DS-TH) spreading is proposed and its symbol-level synchronization scheme is designed and analyzed. The proposed signaling format can significantly reduce the search space while reducing the spectral lines and eliminating inter-frame interference and multi-user inter- ference. Detailed analysis of the proposed scheme is carried out. Synchronization performance of the proposed signaling format in multipath channel is derived and supported by computer simulation. The search step which is closely associated with the delay of data modulated pulses is analyzed. Using the TH code, the proposed signaling format and synchronization scheme especially works well in moderate and low data rate systems.
文摘Empirical mode decomposition( EMD) is a powerful tool of time-frequency analysis. EMD decomposes a signal into a series of sub-signals,called Intrinsic mode functions( IMFs). Each IMF contains different frequency components which can deal with the nonlinear and non-stationary of signal. Complete ensemble empirical mode decomposition( CEEMD) is an improved algorithm,which can provide an accurate reconstruction of the original signal and better spectral separation of the modes. The authors studied the decomposition result of a synthetic signal obtained from EMD and CEEMD. The result shows that the CEEMD has suitability in spectrum decomposition time-frequency analysis. Compared with traditional methods,a higher time-frequency resolution is obtained through verifying the method on both synthetic and real data.
基金supported by a grant from the national High Technology Research and development Program of China(863 Program)(No.2012AA01A502)National Natural Science Foundation of China(No.61179006)Science and Technology Support Program of Sichuan Province(No.2014GZX0004)
文摘To overcome the inter-carrier interference (ICI) of orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) and multipath, this paper develops a blind adaptive interference suppression scheme based on independent component analysis (ICA). Taking into account statistical independence of subcarriers' signals of OFDM, the signal recovery mechanism is investigated to achieve the goal of blind equalization. The received OFDM signals can be considered as the mixed observation signals. The effect of CFO and multipath corresponds to the mixing matrix in the problem of blind source separation (BSS) framework. In this paper, the ICA- based OFDM system model is built, and the proposed ICA-based detector is exploited to extract source signals from the observation of a received mixture based on the assumption of statistical independence between the sources. The blind separation technique can increase spectral efficiency and provide robustness performance against erroneous parameter estimation problem. Theoretical analysis and simulation results show that compared with the conventional pilot-based scheme, the improved performance of OFDM systems is obtained by the proposed ICA-based detection technique.
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
基金Supported by the National Natural Science Foundation of China under Grant No. 11005030Science Foundations of Hebei Education Department under Grant No. 2009135+1 种基金Science Foundations of Inner Mongolia Education Department under Grant No. NJ09178Science Foundation of Hebei Normal University
文摘We numerically study the dynamics of meandering spiral waves in the excitable system subjected to a feedback signal coming from two measuring points located on a straight line together with the initial spiral core. The core location and size radius of the final attractors are computed, and they change with the position of the moving measuring point in a unique way. By the Fourier Spectral analysis, we find the frequency-locked behaviors different from the driving scheme of the external periodic force. It when the moving measuring point approaches closely is also found that the meandering spiral wave can be eliminated the boundary and its feedback gain is large enough. This offers an effective and convenient method for eliminating meandering spiral waves.