Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as t...Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.展开更多
An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite eleme...An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.展开更多
基金supported jointly by the National Natural Science Foundation Fund of China (No.40930418)Chinese government-funded scientific program of the Sino Probe Deep Exploration in China (SinoProbe03)the National Science and Technology Support Program Project (No. 2011BAB04B01)
文摘Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.
基金Universiti Kebangsaan Malaysia grant UKM-KK-03-FRGS 0118-2010Universiti Teknikal Malaysia Melaka for supporting these research activities
文摘An effective and simple way to develop equations from impact strain signals was proposed.Little research has been performed in this area,but this equation is very important for evaluating input signals in finite element analysis impact tests and for obtaining additional information on material deformation and fracture processes under impact loading.For this purpose,dynamic impact responses were examined through signals obtained from a strain gauge installed on an impact striker connected to a data acquisition system.Aluminium 6061-T6 was used to extract strain responses on the striker during Charpy impact testing.Statistical analysis was performed using the I-kaz method,and curve fitting equations based on the equation for vibration response under a non-periodic force were used to evaluate the Charpy impact signals.The I-kaz coefficients and curve fitting equations were then compared and discussed with related parameters,such as velocities and thicknesses.Velocity and thickness were found to be related to the strain signal patterns,curve fitting equations and I-kaz coefficients.The equations developed using this method had R2 values greater than 97.7%.Finally,the constructed equations were determined to be suitable for evaluating Charpy impact strain signal patterns and obtaining additional information on fracture processes under impact loading.