For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest p...For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.展开更多
Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background...Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background noises. Multiwavelet is a powerful tool used to conduct non-stationary fault feature extraction. However, the existing predetermined multiwavelet bases are independ- ent of the dynamic response signals. In this paper, a constructing technique of vibration data-driven maximal-overlap adaptive multiwavelet (MOAMW) is proposed for enhancing the extracting performance of fault symptom. It is able to derive an opti- mal multiwavelet basis that best matches the critical non-stationary and transient fault signatures via genetic algorithm. In this technique, two-scale similarity transform (TST) and symmetric lifting (SymLift) scheme are combined to gain high designing freedom for matching the critical faulty vibration contents in vibration signals based on the maximal fitness objective. TST and SymLift can add modifications to the initial multiwavelet by changing the approximation order and vanishing moment of mul- tiwavelet, respectively. Moreover, the beneficial feature of the MOAWM lies in that the maximal-overlap filterbank structure can enhance the periodic and transient characteristics of the sensor signals and preserve the time and frequency analyzing res- olution during the decomposition process. The effectiveness of the proposed technique is validated via a numerical simulation as well as a rolling element beating with an outer race scrape and a gearbox with rub fault.展开更多
基金Projects(61203332,61203208) supported by the National Natural Science Foundation of China
文摘For vision-based mobile robot navigation, images of the same scene may undergo a general affine transformation in the case of significant viewpoint changes. So, a novel method for detecting affine invariant interest points is proposed to obtain the invariant local features, which is coined polynomial local orientation tensor(PLOT). The new detector is based on image local orientation tensor that is constructed from the polynomial expansion of image signal. Firstly, the properties of local orientation tensor of PLOT are analyzed, and a suitable tuning parameter of local orientation tensor is chosen so as to extract invariant features. The initial interest points are detected by local maxima search for the smaller eigenvalues of the orientation tensor. Then, an iterative procedure is used to allow the initial interest points to converge to affine invariant interest points and regions. The performances of this detector are evaluated on the repeatability criteria and recall versus 1-precision graphs, and then are compared with other existing approaches. Experimental results for PLOT show strong performance under affine transformation in the real-world conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51275384)the Key Project of National Natural Science Foundation of China(Grant No.51035007)+1 种基金the National Basic Research Program of China(Grant No.2009CB724405)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110201130001)
文摘Vibration signal is an important prerequisite for mechanical fault detection. However, early stage defect of rotating machiner- ies is difficult to identify because their incipient energy is interfered with background noises. Multiwavelet is a powerful tool used to conduct non-stationary fault feature extraction. However, the existing predetermined multiwavelet bases are independ- ent of the dynamic response signals. In this paper, a constructing technique of vibration data-driven maximal-overlap adaptive multiwavelet (MOAMW) is proposed for enhancing the extracting performance of fault symptom. It is able to derive an opti- mal multiwavelet basis that best matches the critical non-stationary and transient fault signatures via genetic algorithm. In this technique, two-scale similarity transform (TST) and symmetric lifting (SymLift) scheme are combined to gain high designing freedom for matching the critical faulty vibration contents in vibration signals based on the maximal fitness objective. TST and SymLift can add modifications to the initial multiwavelet by changing the approximation order and vanishing moment of mul- tiwavelet, respectively. Moreover, the beneficial feature of the MOAWM lies in that the maximal-overlap filterbank structure can enhance the periodic and transient characteristics of the sensor signals and preserve the time and frequency analyzing res- olution during the decomposition process. The effectiveness of the proposed technique is validated via a numerical simulation as well as a rolling element beating with an outer race scrape and a gearbox with rub fault.