A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several t...A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.展开更多
It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity in the multiple-input multiple-output(MIMO) communication systems.In this letter,a simple proof is pre...It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity in the multiple-input multiple-output(MIMO) communication systems.In this letter,a simple proof is presented for the fact that the channel capacity increases with an increase in the number of receiving antennas.The proof is based on the famous capacity formula of Foschini and Gans with matrix theory.展开更多
China Launched its first satellite for mobile communications on a LM-3B launch vehicle from the Xichang Satellite Launch Center at 0:22 on August 6,2016.The Tiantong 1 satellite was developed by the China Academy of ...China Launched its first satellite for mobile communications on a LM-3B launch vehicle from the Xichang Satellite Launch Center at 0:22 on August 6,2016.The Tiantong 1 satellite was developed by the China Academy of Space Technology under CASC to provide all-weather,all-time stable and reliable mobile communications services to China and surrounding regions as well as to the Middle East,Africa,展开更多
It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interferen...It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.展开更多
文摘A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.
基金National Nature Science Foundation of China(No. 60672061)
文摘It is well known that adding more antennas at the transmitter or at the receiver may offer larger channel capacity in the multiple-input multiple-output(MIMO) communication systems.In this letter,a simple proof is presented for the fact that the channel capacity increases with an increase in the number of receiving antennas.The proof is based on the famous capacity formula of Foschini and Gans with matrix theory.
文摘China Launched its first satellite for mobile communications on a LM-3B launch vehicle from the Xichang Satellite Launch Center at 0:22 on August 6,2016.The Tiantong 1 satellite was developed by the China Academy of Space Technology under CASC to provide all-weather,all-time stable and reliable mobile communications services to China and surrounding regions as well as to the Middle East,Africa,
基金supportedin part by Science and Technology Project of State Grid Corporation of China(SGIT0000KJJS1500008)Science and Technology Project of State Grid Corporation of China:“Research and Application of Distributed Energy Resource Public Information Service Platform based on Multisource Data Fusion and Mobile Internet Technologies”Science and Technology Project of State Grid Corporation of China:“Research on communication access technology for the integration, protection, and acquisition of multiple new energy resources”
文摘It has been shown that the deployment of device-to-device(D2D) communication in cellular systems can provide better support for local services. However, improper design of the hybrid system may cause severe interference between cellular and D2D links. In this paper, we consider transceiver design for the system employing multiple antennas to mitigate the interference. The precoder and decoder matrices are optimized in terms of sum mean squared error(MSE) and capacity, respectively. For the MSE minimization problem, we present an alternative transceiver optimization algorithm. While for the non-convex capacity maximization problem, we decompose the primal problem into a sequence of standard convex quadratic programs for efficient optimization. The evaluation of our proposed algorithms for performance enhancement of the entire D2D integrated cellular system is carried out through simulations.