The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The spec...This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.展开更多
The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△A...The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.展开更多
In many image resolution enhancement applications,the blurring process of the imaging system is unknown.This paper discusses the problem of single image blind resolution enhancement without estimating the point spread...In many image resolution enhancement applications,the blurring process of the imaging system is unknown.This paper discusses the problem of single image blind resolution enhancement without estimating the point spread function(PSF).A regularization model is constructed for image enhancement based on the prior informaton of image error and image gray value,which does not need any prior information of PSF.Moreover,through the solution of Euler equations,an anisotropic nonlinear diffusion equation are obtained,which can avoid the high computational cost of regularization model.Furthermore,in order to get sub-pixel superresolved image,the regularization model for image enhancement is extended to the enlargement of image,which can enlarge and enhance image at the same time.Last,to get clearer edges,a high frequency enhancement filter is used on the superresolved image.Numerical results show that the new model can get much clearer super-resolution images than traditional methods,and the peak signal to noise ratios (PSNRs) are also higher than traditional methods.展开更多
In order to improve the video quality of transmission with data loss,a spatial and temporal error concealment method was proposed,which considered both the state information of the network and the perceptual weight of...In order to improve the video quality of transmission with data loss,a spatial and temporal error concealment method was proposed,which considered both the state information of the network and the perceptual weight of the video content.The proposed method dynamically changed the reliability weight of the neighboring macroblock,which was used to conceal the lost macroblocks according to the packet loss rate of the current channel state.The perceptual weight map was utilized as side information to do weighted pixel interpolation and side-match based motion compensation for spatial and temporal error concealment,respectively.And the perceptual weight of the neighboring macroblocks was adaptively modified according to the perceptual weight of the lost macroblocks.Compared with the method used in H.264 joint model,experiment results show that the proposed method performs well both in subjective video quality and objective video quality,and increases the average peak signal-to-noise ratio(PSNR) of the whole frame by about 0.4 dB when the video bitstreams are transmitted with packets loss.展开更多
More methods can be used to remove the additive noise, such as the Mean of Least Variance (MLV) filter. When the signal is noised by the multiplicative noise, it is difficult to remove. The paper presents an improved ...More methods can be used to remove the additive noise, such as the Mean of Least Variance (MLV) filter. When the signal is noised by the multiplicative noise, it is difficult to remove. The paper presents an improved filter to remove multiplicative noise by changing the multiplicative noise to the additive noise, and then using the MLV-like to remove the additive noise. The simulation results show that the performance is better than Minimum Coefficient of Variation (MCV) filter and MLV filter. Both one-dimension and image experiments demonstrate its theoretical performance.展开更多
We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult...We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.展开更多
Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable thresh...Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.展开更多
In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be a...In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.展开更多
The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the...The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the outermost surface plane, the subsurface structure information has been elusive in many studies. Using the profile imaging with aberration-corrected transmission electron microscopy, the structure information in both the outermost layer and the sublayers of the CeO2(100) surface has been obtained. In addition to the normal structures that have been reported before, where the surface is Ce-or O-terminated, a metastable surface has been discovered. In the new structure, there is an atomic layer reversal between the outermost layer and the sublayer, giving a structure with O as the outermost layer for the stoichiometry of normal Ce-terminated surface. The charge redistribution for the polarity compensation has also been changed relative to the normal surface.展开更多
A robust generalized sidelobe canceller is proposed to combat direction of arrival(DOA)mismatches.To estimate the interference-plus-noise(IPN)statistics characteristics,conventional signal of interest(SOI)extraction m...A robust generalized sidelobe canceller is proposed to combat direction of arrival(DOA)mismatches.To estimate the interference-plus-noise(IPN)statistics characteristics,conventional signal of interest(SOI)extraction methods usually collect a large number of segments where only the IPN signal is active.To avoid that collection procedure,we redesign the blocking matrix structure using an eigenanalysis method to reconstruct the IPN covariance matrix from the samples.Additionally,a modified eigenanalysis reconstruction method based on the rank-one matrix assumption is proposed to achieve a higher reconstruction accuracy.The blocking matrix is obtained by incorporating the effective reconstruction into the maximum signal-to-interferenceplus-noise ratio(MaxSINR)beamformer.It can minimize the influence of signal leakage and maximize the IPN power for further noise and interference suppression.Numerical results show that the two proposed methods achieve considerable improvements in terms of the output waveform SINR and correlation coefficients with the desired signal in the presence of a DOA mismatch and a limited number of snapshots.Compared to the first proposed method,the modified one can reduce the signal distortion even further.展开更多
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金Supported by the National Natural Science Foundation of China(No.60496311)
文摘This paper proposes a subspace-based noise variance and Signal-to-Noise Ratio (SNR) estimation algorithm for Multi-Input Multi-Output (MIMO) wireless Orthogonal Frequency Division Multiplexing (OFDM) systems. The special training sequences with the property of orthogonality and phase shift orthogonality are used in pilot tones to obtain the estimated channel correlation matrix. Partitioning the observation space into a delay subspace and a noise subspace, we achieve the measurement of noise variance and SNR. Simulation results show that the proposed estimator can obtain accurate and real-time measurements of the noise variance and SNR for various multipath fading channels, demonstrating its strong robustness against different channels.
文摘The signal to noise ratio (SNR) of conventional sigma delta analog to digital converter (∑△ADC) reduces with input signal strength. The existing concept of adaptive quantization is applied to the design of ∑△ADC to improve SNR with high dynamic range. An adaptive algorithm and its circuit implementation is proposed. Because of the error due to the circuit implementation, an error self-calibration circuit is also designed. Simulation results indicate that SNR can he nearly independent of the signal strength.
基金Supported by the National Natural Science Foundation of China(No.60272013) and National Excellent Doctoral DissertationFund of China(No.200140)
文摘In many image resolution enhancement applications,the blurring process of the imaging system is unknown.This paper discusses the problem of single image blind resolution enhancement without estimating the point spread function(PSF).A regularization model is constructed for image enhancement based on the prior informaton of image error and image gray value,which does not need any prior information of PSF.Moreover,through the solution of Euler equations,an anisotropic nonlinear diffusion equation are obtained,which can avoid the high computational cost of regularization model.Furthermore,in order to get sub-pixel superresolved image,the regularization model for image enhancement is extended to the enlargement of image,which can enlarge and enhance image at the same time.Last,to get clearer edges,a high frequency enhancement filter is used on the superresolved image.Numerical results show that the new model can get much clearer super-resolution images than traditional methods,and the peak signal to noise ratios (PSNRs) are also higher than traditional methods.
基金Project(2006C11200) supported by the Science and Technology Project of Zhejiang Province of China
文摘In order to improve the video quality of transmission with data loss,a spatial and temporal error concealment method was proposed,which considered both the state information of the network and the perceptual weight of the video content.The proposed method dynamically changed the reliability weight of the neighboring macroblock,which was used to conceal the lost macroblocks according to the packet loss rate of the current channel state.The perceptual weight map was utilized as side information to do weighted pixel interpolation and side-match based motion compensation for spatial and temporal error concealment,respectively.And the perceptual weight of the neighboring macroblocks was adaptively modified according to the perceptual weight of the lost macroblocks.Compared with the method used in H.264 joint model,experiment results show that the proposed method performs well both in subjective video quality and objective video quality,and increases the average peak signal-to-noise ratio(PSNR) of the whole frame by about 0.4 dB when the video bitstreams are transmitted with packets loss.
基金Partly supported by the National Natural Science Foundation of China(No.60133010)Natural Science Foundation of Education Department of Shaanxi Province(No.05JK312)Natural Science Foundation of Xianyang Normal University(No.04XSYK101)
文摘More methods can be used to remove the additive noise, such as the Mean of Least Variance (MLV) filter. When the signal is noised by the multiplicative noise, it is difficult to remove. The paper presents an improved filter to remove multiplicative noise by changing the multiplicative noise to the additive noise, and then using the MLV-like to remove the additive noise. The simulation results show that the performance is better than Minimum Coefficient of Variation (MCV) filter and MLV filter. Both one-dimension and image experiments demonstrate its theoretical performance.
基金Supported by Chinese 863 Program (2006AA01Z268)the National Natural Science Foundation of China (No. 60496311)
文摘We investigate the sum capacity of Block Diagonalization precoding Multiple Input Mul-tiple Output Broadcast Channels(BD MIMO BC) with imperfect Channel State Information(CSI) at the base station.Since it is difficult to obtain the exact expression,a lower and an upper bounds of the sum capacity under Gaussian channel estimation errors are drived instead.Analyses show that the gap between two bounds is considerably tight at all Signal to Noise Ratio(SNR) region.From the lower bound of the sum capacity,we can see that the multiplexing gain tends to be zero at high SNR region,which indicates that the BD MIMO BC system with channel estimation errors is interference-limited at high SNR.
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(2011-035) supported by Shanxi Province Scholarship Foundation, China+2 种基金Project(20120010) supported by Universities High-tech Foundation Projects, ChinaProject (2013021016-1) supported by the Youth Science and Technology Foundation of Shanxi Province, ChinaProjects(2013011016-1, 2012011014-1) supported by the Natural Science Foundation of Shanxi Province, China
文摘Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.
基金Project(60904090) supported by the National Natural Science Foundation of China
文摘In low earth orbit (LEO) satellite or missile communication scenarios, signals may experience extremely large Doppler shifts and have short visual time. Thus, direct sequence spread spectrum (DSSS) systems should be able to achieve acquisition in a very short time in spite of large Doppler frequencies. However, the traditional methods cannot solve it well. This work describes a new method that uses a differential decoding technique for Doppler mitigation and a batch process of FFT (fast Fourier transform) and IFFT (invert FFT) for the purpose of parallel code phase search by frequency domain correlation. After the code phase is estimated, another FFT process is carried out to search the Doppler frequency. Since both code phase and Doppler frequency domains are searched in parallel, this architecture can provide acquisition fifty times faster than conventional FFT methods. The performance in terms of the probability of detection and false alarm are also analyzed and simulated, showing that a signal-to-noise ratio (SNR) loss of 3 dB is introduced by the differential decoding. The proposed method is an efficient way to shorten the acquisition time with slightly hardware increasing.
基金supported by the National natural Science Foundation of China(51525102,51390475,51371102 and 21673277)the National Basic Research Program of China(2015CB654902)
文摘The structure and properties of CeO2 surfaces have been intensively studied due to their importance in a lot of surface-related applications. Since most of surface techniques probe the structure information inside the outermost surface plane, the subsurface structure information has been elusive in many studies. Using the profile imaging with aberration-corrected transmission electron microscopy, the structure information in both the outermost layer and the sublayers of the CeO2(100) surface has been obtained. In addition to the normal structures that have been reported before, where the surface is Ce-or O-terminated, a metastable surface has been discovered. In the new structure, there is an atomic layer reversal between the outermost layer and the sublayer, giving a structure with O as the outermost layer for the stoichiometry of normal Ce-terminated surface. The charge redistribution for the polarity compensation has also been changed relative to the normal surface.
基金Project supported by the National Natural Science Foundation of China(No.61571436)
文摘A robust generalized sidelobe canceller is proposed to combat direction of arrival(DOA)mismatches.To estimate the interference-plus-noise(IPN)statistics characteristics,conventional signal of interest(SOI)extraction methods usually collect a large number of segments where only the IPN signal is active.To avoid that collection procedure,we redesign the blocking matrix structure using an eigenanalysis method to reconstruct the IPN covariance matrix from the samples.Additionally,a modified eigenanalysis reconstruction method based on the rank-one matrix assumption is proposed to achieve a higher reconstruction accuracy.The blocking matrix is obtained by incorporating the effective reconstruction into the maximum signal-to-interferenceplus-noise ratio(MaxSINR)beamformer.It can minimize the influence of signal leakage and maximize the IPN power for further noise and interference suppression.Numerical results show that the two proposed methods achieve considerable improvements in terms of the output waveform SINR and correlation coefficients with the desired signal in the presence of a DOA mismatch and a limited number of snapshots.Compared to the first proposed method,the modified one can reduce the signal distortion even further.