期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于信度融合和滑模控制的暂态电压扰动源容错性定位
1
作者 翁国庆 黄飞腾 +1 位作者 朱双双 戚军 《电力系统自动化》 EI CSCD 北大核心 2017年第8期2-10,共9页
提出了一种基于信度融合和滑模控制的含分布式电源(DG)智能配电网中实现暂态电压扰动源(TVDS)容错性自动定位方法。在基于网络化电能质量监测系统平台的TVDS容错性自动定位系统框架下,对其中关键功能模块的实现原理进行详细分析,包括基... 提出了一种基于信度融合和滑模控制的含分布式电源(DG)智能配电网中实现暂态电压扰动源(TVDS)容错性自动定位方法。在基于网络化电能质量监测系统平台的TVDS容错性自动定位系统框架下,对其中关键功能模块的实现原理进行详细分析,包括基于电能质量监测点优化布置的电能质量动态状态估计、扰动方向判定信度影响因素分析及信度融合、DG接入对扰动方向判定影响规律分析与归纳。然后,提出一种基于滑模控制的TVDS容错性定位算法,实现综合考虑了扰动方向融合信度、DG接入方向误判校正的TVDS容错性自动定位。最后,通过IEEE 34节点含DG配电网络算例,分析验证了所提TVDS容错性定位方法的可行性和有效性。 展开更多
关键词 暂态电压扰动源 容错性定位 分布式电源并网 信度融合 滑模控制
下载PDF
基于模糊积分的可信度融合目标检测
2
作者 熊大容 杨烜 《激光与红外》 CAS CSCD 北大核心 2009年第6期655-659,共5页
针对可见光和红外热图像序列中的远距离目标检测问题,提出了一种基于模糊积分的可信度融合的目标检测方法。该方法通过帧间差累积,在两种传感器的图像中确定了运动目标区域,根据目标区域的强度分析,定义了目标可信度度量,进而利用模糊... 针对可见光和红外热图像序列中的远距离目标检测问题,提出了一种基于模糊积分的可信度融合的目标检测方法。该方法通过帧间差累积,在两种传感器的图像中确定了运动目标区域,根据目标区域的强度分析,定义了目标可信度度量,进而利用模糊积分融合函数进行可信度融合以实现目标检测。试验结果表明模糊积分分类效果较好,从而证明了该方法在目标识别中的可靠性和可信度,具有一定的实用性。 展开更多
关键词 可见光图像序列 红外图像序列 模糊积分 信度融合
下载PDF
基于可信度加权融合方法在维修性评价的应用 被引量:12
3
作者 闫鹏飞 孙权 《计算机仿真》 CSCD 北大核心 2010年第6期31-35,共5页
维修性作为武器装备的重要特性,日益受到使用方和研制方的重视。随科技进步的加快和装备复杂程度的增高,针对维修性指标评价问题变得日益复杂,必须研究可信度加权融合方法与自助法的结合技术在维修性评价中的应用。首先提出了基于可信... 维修性作为武器装备的重要特性,日益受到使用方和研制方的重视。随科技进步的加快和装备复杂程度的增高,针对维修性指标评价问题变得日益复杂,必须研究可信度加权融合方法与自助法的结合技术在维修性评价中的应用。首先提出了基于可信度的加权的融合方法和自助法,然后根据贝叶斯理论的思想和装甲装备维修的工程背景,利用可信度加权融合和自助法结合技术,在较少的试验样本的基础上得出了精确的验前验后模型和准确的维修性指标综合评价值。结果表明,方法不仅能有效地评价装备维修性指标,而且比以往大样本的国军标规定的方法大大减少了试验样本数量,进而大幅度的节约了试验经费和时间。确认可以作为维修性指标综合评价的有力的依据。 展开更多
关键词 维修性评价 贝叶斯方法 自助法 信度加权融合方法
下载PDF
公共环境下机器人位姿信度估计与自主定位 被引量:1
4
作者 李希 高庆吉 王丽芳 《微计算机信息》 2010年第26期151-153,共3页
为了解决服务机器人在候机楼环境中的自主定位问题,以全局位姿信度作为依据,设计了一种机器人主动定位算法。首先定义单一传感器获取的位姿信息的可信度,利用该可信度作为判别标准,进行视觉和里程计的位姿信息融合,获得精度更高的机器... 为了解决服务机器人在候机楼环境中的自主定位问题,以全局位姿信度作为依据,设计了一种机器人主动定位算法。首先定义单一传感器获取的位姿信息的可信度,利用该可信度作为判别标准,进行视觉和里程计的位姿信息融合,获得精度更高的机器人全局位姿,并引入D-S证据理论对全局位姿进行评价,得到全局位姿的信度估计。根据全局位姿信度,设计了机器人的主动定位算法。通过实际机器人在候机楼模拟环境中的定位实验,验证了该方法的有效性和鲁棒性。 展开更多
关键词 信度 位姿信度估计 位姿信度融合 主动定位
下载PDF
Rolling bearing fault diagnosis based on data-level and feature-level information fusion
5
作者 Shu Yongdong Ma Tianchi Lin Yonggang 《Journal of Southeast University(English Edition)》 EI CAS 2024年第4期396-402,共7页
To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-le... To address the limitation of single acceleration sensor signals in effectively reflecting the health status of rolling bearings,a rolling bearing fault diagnosis method based on the fusion of data-level and feature-level information was proposed.First,according to the impact characteristics of rolling bearing faults,correlation kurtosis rules were designed to guide the weight distribution of multi-sensor signals.These rules were then combined with a weighted fusion method to obtain high-quality data-level fusion signals.Subsequently,a feature-fusion convolutional neural network(FFCNN)that merges the one-dimensional(1D)features extracted from the fused signal with the two-dimensional(2D)features extracted from the wavelet time-frequency spectrum was designed to obtain a comprehensive representation of the health status of rolling bearings.Finally,the fused features were fed into a Softmax classifier to complete the fault diagnosis.The results show that the proposed method exhibits an average test accuracy of over 99.00%on the two rolling bearing fault datasets,outperforming other comparison methods.Thus,the method can be effectively utilized for diagnosing rolling bearing faults. 展开更多
关键词 fault diagnosis information fusion correlation kurtosis feature-fusion convolutional neural network
下载PDF
A BP neural network based information fusion method for urban traffic speed estimation 被引量:6
6
作者 Qiu Chenye Zuo Xingquan Wang Chunlu Wu Jianping 《Engineering Sciences》 EI 2010年第1期77-83,共7页
Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this syst... Obtaining comprehensive and accurate information is very important in intelligent tragic system (ITS). In ITS, the GPS floating car system is an important approach for traffic data acquisition. However, in this system, the GPS blind areas caused by tall buildings or tunnels could affect the acquisition of tragic information and depress the system performance. Aiming at this problem, a novel method employing a back propagation (BP) neural network is developed to estimate the traffic speed in the GPS blind areas. When the speed of one road section is lost, the speed of its related road sections can be used to estimate its speed. The complete historical data of these road sections are used to train the neural network, using Levenberg-Marquardt learning algorithm. Then, the current speed of the related roads is used by the trained neural network to get the speed of the road section without GPS signal. We compare the speed of the road section estimated by our method with the real speed of this road section, and the experimental results show that the proposed method of traffic speed estimation is very effective. 展开更多
关键词 BP neural network data fusion traffic speed intelligent traffic system
下载PDF
Distributed cubature Kalman filter based on observation bootstrap sampling
7
作者 胡振涛 Hu Yumei +2 位作者 Zheng Shanshan Li Xian Guo Zhen 《High Technology Letters》 EI CAS 2016年第2期142-147,共6页
Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with ... Aiming at the adverse effect caused by observation noise on system state estimation precision,a novel distributed cubature Kalman filter(CKF) based on observation bootstrap sampling is proposed.Firstly,combining with the extraction and utilization of the latest observation information and the prior statistical information from observation noise modeling,an observation bootstrap sampling strategy is designed.The objective is to deal with the adverse influence of observation uncertainty by increasing observations information.Secondly,the strategy is dynamically introduced into the cubature Kalman filter,and the distributed fusion framework of filtering realization is constructed.Better filtering precision is obtained by promoting observation reliability without increasing the hardware cost of observation system.Theory analysis and simulation results show the proposed algorithm feasibility and effectiveness. 展开更多
关键词 state estimation cubature Kalman filter (CKF) observation bootstrap sampling distributed weighted fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部