Not So Cooperative Caching(NSCC) considers a network comprised of selfish nodes; each is with caching capability and an objective of reducing its own access cost by fetching data from its local cache or from neighbori...Not So Cooperative Caching(NSCC) considers a network comprised of selfish nodes; each is with caching capability and an objective of reducing its own access cost by fetching data from its local cache or from neighboring caches. These nodes would cooperate in caching and share cached content if and only if they each benefit. The challenges are to determine what objects to cache at each node and to implement the system in the context of Information Centric Networking(ICN). This work includes both a solution for the NSCC problem and a design and implementation of an NSCC system in Named Data Networking(NDN), a large effort that exemplifies ICN. Our design applies NDN synchronization protocol to facilitate the information exchange among nodes, adopts group key encryption to control data access within the NSCC group, and offers an error checker to detect error events in the system. Our approach is validated by deploying the system we developed on Planet Lab.展开更多
To overcome the problem of existing neighboring access point (AP) discovery methods in WLAN, for example they (PnP) of mul proposed. Us can not provide the accurate neighboring APs information needed for the Plug-...To overcome the problem of existing neighboring access point (AP) discovery methods in WLAN, for example they (PnP) of mul proposed. Us can not provide the accurate neighboring APs information needed for the Plug-and-Play ti-mode APs, three kinds of neighboring AP discovery and information exchange methods are ing these three neighboring AP discovery methods, passive discovery method, active discovery method and station assistant discovery method, the multi-mode AP can discover all neighboring APs and obtain needed information. We further propose two whole process flows, which combine three discovery methods in different manner, to achieve different goals. One process flow is to discover the neighboring AP as fast as possible, called fast discovery process flow. The other is to discover the neighboring AP with minimal interference to neighboring and accuracy of the method is confirmed APs, called the minimal interference process flow. The validity by the simulation.展开更多
Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is ...Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is proffered which is more practical than existing ones.The definition of trajectory consensus is given and a new consensus protocol is exhibited such that multi-agent system achieves trajectory consensus.In addition,a formation control strategy is designed.A common Lyapunov function is proposed to analyze the consensus convergence of networked multi-agent systems with switching topologies.Simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can b...In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.展开更多
基金sponsored by the National Grand Fundamental Research 973 program of China under Grant No.2009CB320505the National Nature Science Foundation of China under Grant No. 60973123+1 种基金the Technology Support Program (Industry) of Jiangsu under Grant No.BE2011173Prospective Research Project on Future Networks of Jiangsu Future Networks Innovation Institute under Grant No.BY2013095-5-03
文摘Not So Cooperative Caching(NSCC) considers a network comprised of selfish nodes; each is with caching capability and an objective of reducing its own access cost by fetching data from its local cache or from neighboring caches. These nodes would cooperate in caching and share cached content if and only if they each benefit. The challenges are to determine what objects to cache at each node and to implement the system in the context of Information Centric Networking(ICN). This work includes both a solution for the NSCC problem and a design and implementation of an NSCC system in Named Data Networking(NDN), a large effort that exemplifies ICN. Our design applies NDN synchronization protocol to facilitate the information exchange among nodes, adopts group key encryption to control data access within the NSCC group, and offers an error checker to detect error events in the system. Our approach is validated by deploying the system we developed on Planet Lab.
基金NTT-DoCoMo Beijing Communication Labs the National High Technology Research and Development Program of China(No.2006AA01Z276).
文摘To overcome the problem of existing neighboring access point (AP) discovery methods in WLAN, for example they (PnP) of mul proposed. Us can not provide the accurate neighboring APs information needed for the Plug-and-Play ti-mode APs, three kinds of neighboring AP discovery and information exchange methods are ing these three neighboring AP discovery methods, passive discovery method, active discovery method and station assistant discovery method, the multi-mode AP can discover all neighboring APs and obtain needed information. We further propose two whole process flows, which combine three discovery methods in different manner, to achieve different goals. One process flow is to discover the neighboring AP as fast as possible, called fast discovery process flow. The other is to discover the neighboring AP with minimal interference to neighboring and accuracy of the method is confirmed APs, called the minimal interference process flow. The validity by the simulation.
基金Projects(61075065, 60774045) supported by the National Natural Science Foundation of China Project(CX2010B080) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Theoretical analysis of consensus for networked multi-agent systems with switching topologies was conducted.Supposing that information-exchange topologies of networked system are dynamic,a modified linear protocol is proffered which is more practical than existing ones.The definition of trajectory consensus is given and a new consensus protocol is exhibited such that multi-agent system achieves trajectory consensus.In addition,a formation control strategy is designed.A common Lyapunov function is proposed to analyze the consensus convergence of networked multi-agent systems with switching topologies.Simulations are provided to demonstrate the effectiveness of the theoretical results.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028Fujian Provincial Natural Science Foundation of China under Grant No.2009J06002
文摘In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.