期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于生物进化与生物智能原理的信息优化方法
1
作者 符勇 《安徽教育学院学报》 2000年第6期57-59,96,共4页
简述了生物智能或生物进化信息处理的内部机制 ,讨论了由生物系统和生物进化过程归纳出的信息优化方法 ,即神经计算方法和演化计算方法 。
关键词 信息优化方法 生物进化 生物智能原理 社会计算方法 演化计算方法 模拟进化法
下载PDF
基于改进背景差分的城市道路自动避障信息采集方法 被引量:1
2
作者 唐勇 徐奇 《信息记录材料》 2022年第8期222-225,共4页
针对城市道路信息采集装置常常因树木、悬浮物遮挡等原因影响正常工作的问题。提出了一种基于背景差分的城市道路自动避障信息采集问题的分析方法。通过对城市道路采集装置的整体结构和系统的组成以及工作原理流程进行改进,根据图像传... 针对城市道路信息采集装置常常因树木、悬浮物遮挡等原因影响正常工作的问题。提出了一种基于背景差分的城市道路自动避障信息采集问题的分析方法。通过对城市道路采集装置的整体结构和系统的组成以及工作原理流程进行改进,根据图像传感器确定遮挡物的信息,然后利用数据处理器结合限位传感器调整装置的角度和高度至正常采集为止,否则装置就会通过无线通信模块请求人工介入处理。基于改进背景差分的识别算法,考虑实际场景的复杂性对识别效果的影响,进行场景背景模型重构。同时,利用图像传感器对车辆路径图像进行处理,确定遮挡物的位置和大小,最终实现采集装置的自动避障。城市道路信息采集优化方法可以有效避免外界环境干扰,为城市道路建设管理提供了新的思路。 展开更多
关键词 交通管理 城市道路信息采集优化方法 背景差分法 自动避障
下载PDF
基于比例危险-比例优势模型的加速寿命试验设计 被引量:3
3
作者 黄婷婷 姜同敏 霍瑞坚 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第5期570-575,579,共7页
将基于信息的优化方法引入基于非参数模型的加速寿命试验优化设计中,针对恒定应力和步进应力两种应力加载方式,分别给出了基于比例危险-比例优势模型的试验优化设计方法.通过对数似然函数建立Fisher信息矩阵和方差-协方差矩阵,并采用基... 将基于信息的优化方法引入基于非参数模型的加速寿命试验优化设计中,针对恒定应力和步进应力两种应力加载方式,分别给出了基于比例危险-比例优势模型的试验优化设计方法.通过对数似然函数建立Fisher信息矩阵和方差-协方差矩阵,并采用基于信息的优化方法建立最优化问题.这种试验优化设计方法可以有效地提高模型参数评估精度,并且避免了传统的优化方法(即将一个与可靠性相关的函数的渐进方差在一个给定区间内的积分值作为优化目标)当目标函数中给定的积分区间变化时将得到不同优化结果的局限.最后给出了应用该方法进行加速寿命试验优化设计的仿真实例. 展开更多
关键词 试验优化设计 基于信息优化方法 比例危险-比例优势模型 非参数模型 加速寿命试验
下载PDF
煤矿高概率险兆事件界定及其研究意义 被引量:6
4
作者 田水承 杨鹏飞 +1 位作者 唐凯 贾爱芳 《西安科技大学学报》 CAS 北大核心 2020年第4期566-571,共6页
事故发生必有险兆。险兆事件是事故形成的基础,是损失发生前的预警信号。险兆事件研究为煤矿等高危领域提高安全性、可靠性提供了一种重要而实用的手段。为界定煤矿高概率险兆事件,通过梳理国内外相关概率分级标准,归纳得到高概率事件... 事故发生必有险兆。险兆事件是事故形成的基础,是损失发生前的预警信号。险兆事件研究为煤矿等高危领域提高安全性、可靠性提供了一种重要而实用的手段。为界定煤矿高概率险兆事件,通过梳理国内外相关概率分级标准,归纳得到高概率事件界定标准,并结合险兆事件定义,明确了煤矿高概率险兆事件定义。通过相关资料,梳理近20 a间发生的各类煤矿事故数量,按照海因里希事故三角形法则(事故的发生数量与险兆事件发生数量比例),计算各类煤矿险兆事件发生数量;运用模糊信息优化处理方法,实现煤矿险兆事件发生数量到发生概率的转化,计算得到各类煤矿险兆事件的发生概率;根据煤矿高概率险兆事件界定标准,顶板类、瓦斯类和运输类3类煤矿险兆事件发生概率分别为0.2527,0.1794和0.1151,发生概率大于0.1,故确定以上3类煤矿险兆事件为煤矿高概率险兆事件。通过分析顶板事故、瓦斯事故和运输事故的严重后果,验证了高概率险兆事件界定的合理性。 展开更多
关键词 煤矿 高概率 险兆事件 海因里希法则 模糊信息优化处理方法
下载PDF
Prediction and Optimization Performance Models for Poor Information Sample Prediction Problems
5
作者 LU Fei SUN Ruishan +2 位作者 CHEN Zichen CHEN Huiyu WANG Xiaomin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第2期316-324,共9页
The prediction process often runs with small samples and under-sufficient information.To target this problem,we propose a performance comparison study that combines prediction and optimization algorithms based on expe... The prediction process often runs with small samples and under-sufficient information.To target this problem,we propose a performance comparison study that combines prediction and optimization algorithms based on experimental data analysis.Through a large number of prediction and optimization experiments,the accuracy and stability of the prediction method and the correction ability of the optimization method are studied.First,five traditional single-item prediction methods are used to process small samples with under-sufficient information,and the standard deviation method is used to assign weights on the five methods for combined forecasting.The accuracy of the prediction results is ranked.The mean and variance of the rankings reflect the accuracy and stability of the prediction method.Second,the error elimination prediction optimization method is proposed.To make,the prediction results are corrected by error elimination optimization method(EEOM),Markov optimization and two-layer optimization separately to obtain more accurate prediction results.The degree improvement and decline are used to reflect the correction ability of the optimization method.The results show that the accuracy and stability of combined prediction are the best in the prediction methods,and the correction ability of error elimination optimization is the best in the optimization methods.The combination of the two methods can well solve the problem of prediction with small samples and under-sufficient information.Finally,the accuracy of the combination of the combined prediction and the error elimination optimization is verified by predicting the number of unsafe events in civil aviation in a certain year. 展开更多
关键词 small sample and poor information prediction method performance optimization method performance combined prediction error elimination optimization model Markov optimization
下载PDF
Safety Evaluation Method of Evacuation Routes in Areas in Case of Earthquake Disasters Using Ant Optimization Algorithm and Geographic Information Systems
6
作者 Kayoko Yamamoto Ximing Li 《Journal of Environmental Science and Engineering(A)》 2017年第9期462-478,共17页
The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and G... The present study aims to propose the method for the quantitative evaluation of safety concerning evacuation routes in case of earthquake disasters in urban areas using ACO (Ant Colony Optimization) algorithm and GIS (Geographic Information Systems). Regarding the safety evaluation method, firstly, the similarity in safety was focused on while taking into consideration road blockage probability, and after classifying roads by means of the hierarchical cluster analysis, the congestion rates of evacuation routes using ACO simulations were estimated. Based on these results, the multiple evacuation routes extracted were visualized on digital maps by means of GIS, and its safety was evaluated. Furthermore, the selection of safe evacuation routes between evacuation sites, for cases when the possibility of large-scale evacuation after an earthquake disaster is high, is made possible. As the safety evaluation method is based on public information, by obtaining the same geographic information as the present study, it is effective in other areas regardless of whether the information is of the past and future. Therefore, in addition to spatial reproducibility, the safety evaluation method also has high temporal reproducibility. Because safety evaluations are conducted on evacuation routes based on quantified data, highly safe evacuation routes that are selected have been quantitatively evaluated, and thus serve as an effective indicator when selecting evacuation routes. 展开更多
关键词 Large-scale evacuation evacuation route safety evaluation earthquake disaster ACO (Ant Colony Optimization) GIS (Geographic Information Systems).
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部