期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
TrigSigs:一种有效的非结构化记录关联合并算法
1
作者 吴羽 盛振华 +1 位作者 寿黎但 陈刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第12期2284-2290,2308,共8页
为了解决从网络数据源提取的非结构化数据的处理问题,提出一种基于触发对的聚类算法TrigSigs,利用触发对挖掘非结构化数据中隐含属性间的关联关系作为辨别实体的标志.该算法能够聚集对辨别实体起到关键作用的特征组合,过滤噪音词汇,并... 为了解决从网络数据源提取的非结构化数据的处理问题,提出一种基于触发对的聚类算法TrigSigs,利用触发对挖掘非结构化数据中隐含属性间的关联关系作为辨别实体的标志.该算法能够聚集对辨别实体起到关键作用的特征组合,过滤噪音词汇,并且根据辨别实体的分辨力,为每个特征词汇赋予合理的权重,使记录的特征向量对辨别实体更具代表性,最终提高聚类结果的细粒度,很好地解决了非结构化数据的记录关联合并问题.实验结果表明:该算法可以过滤绝大部分噪音词汇,并且根据词汇的分辨力合理分配权重,使最终聚类结果的准确率有很大的提升. 展开更多
关键词 记录关联合并 非结构化数据 触发对 属性关联度 信息分布集中度
下载PDF
InfoSigs:一种面向Web对象的细粒度聚类算法 被引量:4
2
作者 盛振华 吴羽 +2 位作者 江锦华 寿黎但 陈刚 《计算机研究与发展》 EI CSCD 北大核心 2010年第5期796-803,共8页
面向Web对象的细粒度聚类已经成为学术界研究的热点.然而现有大多数聚类模型只关注如何对文本内容或文章主题进行聚类,聚类结果粒度较粗,无法满足大规模网络信息检索的质量要求.针对上述挑战,充分挖掘Web文档中词汇间的树状概率层次关系... 面向Web对象的细粒度聚类已经成为学术界研究的热点.然而现有大多数聚类模型只关注如何对文本内容或文章主题进行聚类,聚类结果粒度较粗,无法满足大规模网络信息检索的质量要求.针对上述挑战,充分挖掘Web文档中词汇间的树状概率层次关系,提出一种以词汇信息分布作为特征标志的聚类算法InfoSigs,实现对Web对象的细粒度聚类.算法构建一个信息传递有向无环图,根据词汇在图中信息分布的集中度赋予其合理的权重,产生更具代表性的特征向量;同时算法提出了一个自适应的记录合并模型,有效提高记录簇中记录间的相似度,减少噪音对合并过程的影响.实验结果表明,InfoSigs算法比传统聚类算法—I-Match和Shingling—在F-Measure值上平均约有21.3%的提高,可以有效地运用到多领域Web对象的聚类问题. 展开更多
关键词 WEB对象 词频序TFS 信息分布集中度 相似度直方图 记录簇
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部