期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角 被引量:1
1
作者 谭青蓉 汪大勋 +2 位作者 罗芬 蔡艳 涂冬波 《心理学报》 CSSCI CSCD 北大核心 2021年第11期1286-1298,I0002,I0003,共15页
项目增补(Item Replenishing)对认知诊断计算机自适应测验(CD-CAT)题库的维护有着至关重要的作用,而在线标定是一种重要的项目增补方式。基于数据挖掘中特征选择(Feature Selection)的思路,提出一种高效的基于熵的信息增益的在线标定方... 项目增补(Item Replenishing)对认知诊断计算机自适应测验(CD-CAT)题库的维护有着至关重要的作用,而在线标定是一种重要的项目增补方式。基于数据挖掘中特征选择(Feature Selection)的思路,提出一种高效的基于熵的信息增益的在线标定方法(记为IGEOCM),该方法利用被试在新旧题上的作答联合估计新题的Q矩阵和项目参数。研究采用Monte Carlo模拟实验验证所开发新方法的效果,并同时与已有的在线标定方法SIE、SIE-R-BIC和RMSEA-N进行比较。结果表明:新开发的IGEOCM在各实验条件下均具有较好的项目标定精度和项目估计效率,且整体上优于已有的SIE等方法;同时,IGEOCM标定新题所需的时间低于SIE等方法。总之,研究为CD-CAT题库中项目的增补提供了一种更为高效、准确的方法。 展开更多
关键词 认知诊断计算机自适应测验 项目增补 在线标定 Q 矩阵 信息增益
下载PDF
医疗大数据环境下的疾病预测模型研究 被引量:15
2
作者 王星 刘晓燕 《制造业自动化》 CSCD 北大核心 2022年第7期24-27,共4页
随着社会经济建设以及医疗信息化的高速发展,传统的统计、分析、预测技术已经逐步无法满足行业的需求,医疗行业逐步进入大数据和人工智能时代,利用医院信息系统所积累的医疗大数据进行汇集、建模、分析,可以预测和判定未知数据的已知类... 随着社会经济建设以及医疗信息化的高速发展,传统的统计、分析、预测技术已经逐步无法满足行业的需求,医疗行业逐步进入大数据和人工智能时代,利用医院信息系统所积累的医疗大数据进行汇集、建模、分析,可以预测和判定未知数据的已知类型。对于医疗诊断也是同样如此,医疗信息数据挖掘和机器学习,可以为医学诊断提供丰富的实践参考价值。通过提取某三家医院大数据平台中9个指定特征症状的100份门诊病例,再提取出其中诊断结果为咳嗽病、感冒病症的病例,依据原始样本病例得出的经验熵,以及每个特征所能得到的信息增益,最后将特征数减少至2个,与原始数据集中采集的特征值有很大程度的减少。通过算法的描述得到了较简化的区分感冒和咳嗽病的决策树模型,使用该模型对其它历史病例进行测试,具有较高的准确率,基本达到诊断要求。实际应用中,可根据决策树最终特征值进行检验指标进行采集,减少了无用或者与疾病关系不大的指标采集过程,可减少疾病诊断检验复杂度,可达到诊断预测和辅助诊断的效果病,为医疗业务以及科研提供支持。 展开更多
关键词 医疗大数据 数据挖掘 机器学习 决策树算法 疾病预测 辅助诊断 信息增益熵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部