In relay-assisted cooperative communication,relay nodes help forwarding the information of a source node in case of link failure between the source and a destination.Although user cooperation improves the overall effi...In relay-assisted cooperative communication,relay nodes help forwarding the information of a source node in case of link failure between the source and a destination.Although user cooperation improves the overall efficiency of the network,it requires incentive to stimulate potential relay nodes to assist the source by forwarding its data to the destination.Moreover,the potential relays are better informed than the source about their channel conditions to destination,which results in asymmetric information between the source and the relays.In this paper,we study the problem of lack of forwarding incentive in cooperative communication when channel state information of relays is private information and not known by the source.To tackle this problem,we apply the principle of contract theory to a cooperative wireless system.Source first designs incentive compatible and individually rational contract,consisting of a set of power-credit pairs.Then it broadcasts contract items to nearby nodes.Once the source node receives reply messages from the volunteer relays,it chooses one or more relays based on its requirements and communication starts.Simulation results show how credit assignment works in order to stimulate relays to cooperate and prevents relays from cheating behavior.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. First...This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.展开更多
文摘In relay-assisted cooperative communication,relay nodes help forwarding the information of a source node in case of link failure between the source and a destination.Although user cooperation improves the overall efficiency of the network,it requires incentive to stimulate potential relay nodes to assist the source by forwarding its data to the destination.Moreover,the potential relays are better informed than the source about their channel conditions to destination,which results in asymmetric information between the source and the relays.In this paper,we study the problem of lack of forwarding incentive in cooperative communication when channel state information of relays is private information and not known by the source.To tackle this problem,we apply the principle of contract theory to a cooperative wireless system.Source first designs incentive compatible and individually rational contract,consisting of a set of power-credit pairs.Then it broadcasts contract items to nearby nodes.Once the source node receives reply messages from the volunteer relays,it chooses one or more relays based on its requirements and communication starts.Simulation results show how credit assignment works in order to stimulate relays to cooperate and prevents relays from cheating behavior.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
基金Supported by the NSFC(No.60434020,60572051)Science and Technology Key Item of Ministry of Education of the PRC( No.205-092)the ZJNSF(No. R106745)
文摘This paper presents a new idea, named as modeling multisensor-heterogeneous information, to incorporate the fuzzy logic methodologies with mulitsensor-multitarget system under the framework of random set theory. Firstly, based on strong random set and weak random set, the unified form to describe both data (unambiguous information) and fuzzy evidence (uncertain information) is introduced. Secondly, according to signatures of fuzzy evidence, two Bayesian-markov nonlinear measurement models are proposed to fuse effectively data and fuzzy evidence. Thirdly, by use of "the models-based signature-matching scheme", the operation of the statistics of fuzzy evidence defined as random set can be translated into that of the membership functions of relative point state variables. These works are the basis to construct qualitative measurement models and to fuse data and fuzzy evidence.