For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,an...For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.展开更多
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite...To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.展开更多
In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree alg...In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree algorithm,spectral absorption index (SAI),continuum-removal and derivative spectral analysis were employed to discover characterized spectral features of different targets,and decision trees for identifying a specific class and discriminating different classes were generated. By combining support vector machine (SVM) classifier with different feature extraction strategies including principal component analysis (PCA),minimum noise fraction (MNF),grouping PCA,and derivate spectral analysis,the performance of feature extraction approaches in classification was evaluated. The results show that feature extraction by PCA and derivate spectral analysis are effective to OMIS (operational modular imaging spectrometer) image classification using SVM,and SVM outperforms traditional SAM and MLC classifiers for OMIS data.展开更多
In this paper, the authors propose a new algorithm to hide data inside image using steganography technique. The proposed algorithm uses binary codes and pixels inside an image. The zipped file is used before it is con...In this paper, the authors propose a new algorithm to hide data inside image using steganography technique. The proposed algorithm uses binary codes and pixels inside an image. The zipped file is used before it is converted to binary codes to maximize the storage of data inside the image. By applying the proposed algorithm, a system called Steganography Imaging System (gig) is developed. The system is then tested to see the viability of the proposed algorithm. Various sizes of data are stored inside the images and the Peak signal-to-noise ratio (PSNR) is also captured for each of the images tested. Based on the PSNR value of each images, the stego image has a higher PSNR value. Hence this new steganography algorithm is very efficient to hide the data inside the image.展开更多
Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve t...Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve this problem,researchers should get rid of the data acquired by these channels.Selecting abnormal channels just in the way of visually examining each band image in a imaging data set is a conceivably hard and boring job.To relieve the burden,this paper proposes a method which exploits the spatial and spectral autocorrelations inherent in imaging spectrometer data,and can be used to speed up and,to a great degree,automate the detection of abnormal channels in an imaging spectrometer.This method is applied easily and successfully to one PHI data set and one Hymap data set,and can be applied to remotely sensed data from other hyperspectral sensors.展开更多
A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generat...A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generated from the previous level using the average gray values of the 3 by 3 pixels, and the first level of pyramid image is generated from the original image. The initial horizontal parallaxes between the reference image and each searching image are calculated at the highest level of the image pyramid. Secondly, corresponding image points are searched in each stereo image pair from the third level of image pyramid, and the matching results in all stereo pairs are integrated in the object space, by which the mismatched image points can be eliminated and more accurate spatial information can be obtained for the subsequent pyramid image matching. The matching method based on correlation coefficient with geometric constraints and global relaxation matching is introduced in the process of image matching. Finally, the feasibility of the method proposed in this paper is verified by the experiments using a set of digital frame aerial images with big overlap. Compared with the traditional image matching method with two images, the accuracy of the digital surface model (DSM) generated using the proposed method shows that the multiimage matching method can eliminate the mismatched points effectively and can improve the matching success rate significantly.展开更多
基金National Natural Science Foundation of China(Nos.11847069,11847127)Science Foundation of North University of China(No.XJJ20180030)。
文摘For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.
基金Project(41374118)supported by the National Natural Science Foundation,ChinaProject(20120162110015)supported by Research Fund for the Doctoral Program of Higher Education,China+3 种基金Project(2015M580700)supported by the China Postdoctoral Science Foundation,ChinaProject(2016JJ3086)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(2015JC3067)supported by the Hunan Provincial Science and Technology Program,ChinaProject(15B138)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion.
基金Projects 40401038 and 40871195 supported by the National Natural Science Foundation of ChinaNCET-06-0476 by the Program for New Century Excellent Talents in University20070290516 by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘In order to combine feature extraction operations with specific hyperspectral remote sensing information processing objectives,two aspects of feature extraction were explored. Based on clustering and decision tree algorithm,spectral absorption index (SAI),continuum-removal and derivative spectral analysis were employed to discover characterized spectral features of different targets,and decision trees for identifying a specific class and discriminating different classes were generated. By combining support vector machine (SVM) classifier with different feature extraction strategies including principal component analysis (PCA),minimum noise fraction (MNF),grouping PCA,and derivate spectral analysis,the performance of feature extraction approaches in classification was evaluated. The results show that feature extraction by PCA and derivate spectral analysis are effective to OMIS (operational modular imaging spectrometer) image classification using SVM,and SVM outperforms traditional SAM and MLC classifiers for OMIS data.
文摘In this paper, the authors propose a new algorithm to hide data inside image using steganography technique. The proposed algorithm uses binary codes and pixels inside an image. The zipped file is used before it is converted to binary codes to maximize the storage of data inside the image. By applying the proposed algorithm, a system called Steganography Imaging System (gig) is developed. The system is then tested to see the viability of the proposed algorithm. Various sizes of data are stored inside the images and the Peak signal-to-noise ratio (PSNR) is also captured for each of the images tested. Based on the PSNR value of each images, the stego image has a higher PSNR value. Hence this new steganography algorithm is very efficient to hide the data inside the image.
文摘Data from abnormal channels in an imaging spectrometer almost always exerts an undesired impact on spectrum matching,classification,pattern recognition and other applications in hyperspectral remote sensing.To solve this problem,researchers should get rid of the data acquired by these channels.Selecting abnormal channels just in the way of visually examining each band image in a imaging data set is a conceivably hard and boring job.To relieve the burden,this paper proposes a method which exploits the spatial and spectral autocorrelations inherent in imaging spectrometer data,and can be used to speed up and,to a great degree,automate the detection of abnormal channels in an imaging spectrometer.This method is applied easily and successfully to one PHI data set and one Hymap data set,and can be applied to remotely sensed data from other hyperspectral sensors.
基金Supported by the National Natural Science Foundation of China (Nos. 40771176, 40721001)
文摘A novel method for multi-image matching by synthesizing image and object-space information is proposed. Firstly, four levels of image pyramids are generated according to the rule that the next pyramid level is generated from the previous level using the average gray values of the 3 by 3 pixels, and the first level of pyramid image is generated from the original image. The initial horizontal parallaxes between the reference image and each searching image are calculated at the highest level of the image pyramid. Secondly, corresponding image points are searched in each stereo image pair from the third level of image pyramid, and the matching results in all stereo pairs are integrated in the object space, by which the mismatched image points can be eliminated and more accurate spatial information can be obtained for the subsequent pyramid image matching. The matching method based on correlation coefficient with geometric constraints and global relaxation matching is introduced in the process of image matching. Finally, the feasibility of the method proposed in this paper is verified by the experiments using a set of digital frame aerial images with big overlap. Compared with the traditional image matching method with two images, the accuracy of the digital surface model (DSM) generated using the proposed method shows that the multiimage matching method can eliminate the mismatched points effectively and can improve the matching success rate significantly.